Refined position estimates for surfaces of Willmore type in Riemannian manifolds

被引:0
|
作者
Metzger, Jan [1 ]
机构
[1] Univ Potsdam, Inst Math, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
SPHERES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider surfaces which are critical points of the Willmore functional subject to constrained area. In the case of small area we calculate the corrections to the intrinsic geometry induced by the ambient curvature. These estimates together with the choice of an adapted geometric center of mass lead to refined position estimates in relation to the scalar curvature of the ambient manifold.
引用
收藏
页码:2315 / 2346
页数:32
相关论文
共 50 条
  • [1] Small Surfaces of Willmore Type in Riemannian Manifolds
    Lamm, Tobias
    Metzger, Jan
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (19) : 3786 - 3813
  • [2] LOCAL FOLIATION OF MANIFOLDS BY SURFACES OF WILLMORE TYPE
    Lamm, Tobias
    Metzger, Jan
    Schulze, Felix
    ANNALES DE L INSTITUT FOURIER, 2020, 70 (04) : 1639 - 1662
  • [3] Willmore spheres in compact Riemannian manifolds
    Mondino, Andrea
    Riviere, Tristan
    ADVANCES IN MATHEMATICS, 2013, 232 (01) : 608 - 676
  • [4] Foliations of asymptotically flat manifolds by surfaces of Willmore type
    Tobias Lamm
    Jan Metzger
    Felix Schulze
    Mathematische Annalen, 2011, 350 : 1 - 78
  • [5] Foliations of asymptotically flat manifolds by surfaces of Willmore type
    Lamm, Tobias
    Metzger, Jan
    Schulze, Felix
    MATHEMATISCHE ANNALEN, 2011, 350 (01) : 1 - 78
  • [6] Estimates for eigenvalues on Riemannian manifolds
    Cheng, Qing-Ming
    Yang, Hongcang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (08) : 2270 - 2281
  • [7] On estimates for augmented Hessian type parabolic equations on Riemannian manifolds
    Jiao, Yang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09): : 3266 - 3289
  • [8] CONCENTRATION OF SMALL WILLMORE SPHERES IN RIEMANNIAN 3-MANIFOLDS
    Laurain, Paul
    Mondino, Andrea
    ANALYSIS & PDE, 2014, 7 (08): : 1901 - 1921
  • [9] ONE-CYCLE SWEEPOUT ESTIMATES OF ESSENTIAL SURFACES IN CLOSED RIEMANNIAN MANIFOLDS
    Sabourau, Stephane
    AMERICAN JOURNAL OF MATHEMATICS, 2020, 142 (04) : 1051 - 1082
  • [10] MINIMAL SURFACES ON RIEMANNIAN MANIFOLDS
    吉敏
    ChineseScienceBulletin, 1989, (06) : 444 - 447