ANN-based prediction of ultimate strength of carbon/epoxy tensile specimen using acoustic emission RMS data

被引:6
|
作者
Krishnamoorthy, Kalidasan [1 ]
Sasikumar, T. [2 ]
机构
[1] Lord Jegannath Coll Engn & Technol, Res Ctr, Ramanathichanputhur, Tamil Nadu, India
[2] Lord Jegannath Coll Engn & Technol, Dept Mech Engn, Ramanathichanputhur, Tamil Nadu, India
关键词
artificial neural network; ANN; back propagation; acoustic emission; carbon/epoxy tensile specimen; RMS values; ultimate strength; NEURAL-NETWORKS;
D O I
10.1504/IJMPT.2016.076374
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Acoustic emission (AE) is a phenomenon very widely used to predict the ultimate strength of fibre reinforced plastic composites. The ultimate strength of the carbon/epoxy tensile specimens was predicted, using the artificial neural network (ANN). The 15 numbers of carbon/epoxy composite specimens were fabricated as per ASTM D 3039 standards. These specimens were loaded with a 10 TON capacity universal tensile machine. AE data were collected up to 70% of the failure load. AE parameters like amplitude, duration, energy, count and RMS values were collected. The RMS value corresponding to the amplitude ranges obtained during tensile testing were used to predict the failure load of a similar specimen subjected to uniaxial tension well before its failure load.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 30 条
  • [1] Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data
    V.Arumugam
    R.Naren Shankar
    B.T.N.Sridhar
    A.Joseph Stanley
    JournalofMaterialsScience&Technology, 2010, 26 (08) : 725 - 729
  • [2] Ultimate Strength Prediction of Carbon/Epoxy Tensile Specimens from Acoustic Emission Data
    Arumugam, V.
    Shankar, R. Naren
    Sridhar, B. T. N.
    Stanley, A. Joseph
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2010, 26 (08) : 725 - 729
  • [3] ARTIFICIAL NEURAL NETWORK PREDICTION OF ULTIMATE TENSILE STRENGTH OF RANDOMLY ORIENTED SHORT GLASS FIBRE-EPOXY COMPOSITE SPECIMEN USING ACOUSTIC EMISSION PARAMETERS
    Ramkumar, S.
    ADVANCED COMPOSITES LETTERS, 2015, 24 (05) : 119 - 124
  • [4] Application of ANN-based response surface method to prediction of ultimate strength of stiffened panels
    Mesbahi, Ehsan
    Pu, Yongchang
    JOURNAL OF STRUCTURAL ENGINEERING, 2008, 134 (10) : 1649 - 1656
  • [6] Ultimate Load Prediction in Fiberglass/Epoxy Beams from Acoustic Emission Data using Neural Network and Statistical Analyses
    Hill, Eric v. K.
    Dorfman, Michele D.
    Zhao, Yi
    MATERIALS EVALUATION, 2013, 71 (08) : 977 - 986
  • [7] Artificial Neural Network Prediction of Ultimate Strength of Unidirectional T-300/914 Tensile Specimens Using Acoustic Emission Response
    Sasikumar, T.
    Rajendraboopathy, S.
    Usha, K. M.
    Vasudev, E. S.
    JOURNAL OF NONDESTRUCTIVE EVALUATION, 2008, 27 (04) : 127 - 133
  • [8] Artificial Neural Network Prediction of Ultimate Strength of Unidirectional T-300/914 Tensile Specimens Using Acoustic Emission Response
    T. Sasikumar
    S. Rajendraboopathy
    K. M. Usha
    E. S. Vasudev
    Journal of Nondestructive Evaluation, 2008, 27 : 127 - 133
  • [9] Prediction of delamination growth in carbon/epoxy composites using a novel acoustic emission-based approach
    Mohammadi, Reza
    Saeedifar, Milad
    Toudeshky, Hossein Hosseini
    Najafabadi, Mehdi Ahmadi
    Fotouhi, Mohamad
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2015, 34 (11) : 868 - 878
  • [10] Acoustic Emission Evaluation of Fatigue Life Prediction for a Carbon Steel Specimen using a Statistical-Based Approach
    Mohammad, Mazian
    Abdullah, Shahrum
    Jamaluddin, Nordin
    Innayatullah, Othman
    MATERIALS TESTING, 2013, 55 (06) : 487 - 495