Mixed metric dimension of graphs with edge disjoint cycles

被引:16
|
作者
Sedlar, Jelena [1 ]
Skrekovski, Riste [2 ,3 ]
机构
[1] Univ Split, Fac Civil Engn Architecture & Geodesy, Split, Croatia
[2] Univ Ljubljana, FMF, Ljubljana 1000, Slovenia
[3] Fac Informat Studies, Novo Mesto 8000, Slovenia
关键词
Mixed metric dimension; Unicyclic graphs; Cactus graphs;
D O I
10.1016/j.dam.2021.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a connected graph G, the cardinality of the smallest ordered set of vertices that distinguishes every element of V(G). E(G) is called the mixed metric dimension of G. In this paper we first establish the exact value of the mixed metric dimension of a unicyclic graph G which is derived from the structure of G. We further consider graphs G with edge disjoint cycles, where for each cycle Ci of G we define a unicyclic subgraph G(i) of G in which C-i is the only cycle. Applying the result for unicyclic graph to the subgraph G(i) of every cycle C-i then yields the exact value of the mixed metric dimension of such a graph G. The obtained formulas for the exact value of the mixed metric dimension yield a simple sharp upper bound on the mixed metric dimension, and we conclude the paper conjecturing that the analogous bound holds for general graphs with prescribed cyclomatic number. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [1] Bounds on metric dimensions of graphs with edge disjoint cycles
    Sedlar, Jelena
    Skrekovski, Riste
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 396
  • [2] EDGE DISJOINT CYCLES IN GRAPHS
    HAO, L
    JOURNAL OF GRAPH THEORY, 1989, 13 (03) : 313 - 322
  • [3] Edge disjoint Hamilton cycles in graphs
    Li, GJ
    JOURNAL OF GRAPH THEORY, 2000, 35 (01) : 8 - 20
  • [4] Metric dimension and edge metric dimension of windmill graphs
    Singh, Pradeep
    Sharma, Sahil
    Sharma, Sunny Kumar
    Bhat, Vijay Kumar
    AIMS MATHEMATICS, 2021, 6 (09): : 9138 - 9153
  • [5] Edge metric dimension of graphs
    Nasir, Ruby
    Zafar, Sohail
    Zahid, Zohaib
    ARS COMBINATORIA, 2019, 147 : 143 - 155
  • [6] On the edge metric dimension of graphs
    Wei, Meiqin
    Yue, Jun
    Zhu, Xiaoyu
    AIMS MATHEMATICS, 2020, 5 (05): : 4459 - 4465
  • [7] Edge-disjoint Hamilton cycles in graphs
    Christofides, Demetres
    Kuehn, Daniela
    Osthus, Deryk
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (05) : 1035 - 1060
  • [8] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    LI, MC
    LIU, ZH
    CHINESE SCIENCE BULLETIN, 1991, 36 (12): : 1055 - 1056
  • [9] EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS
    WAN, HH
    UTILITAS MATHEMATICA, 1993, 43 : 245 - 252
  • [10] Edge Disjoint Hamilton Cycles in Knodel Graphs
    Paulraja, P.
    Kumar, S. Sampath
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2016, 17 (03): : 263 - 284