Progress in deep learning-based dental and maxillofacial image analysis: A systematic review

被引:35
|
作者
Singh, Nripendra Kumar [1 ]
Raza, Khalid [1 ]
机构
[1] Jamia Millia Islamia, Dept Comp Sci, New Delhi 110025, India
关键词
Artificial Intelligence; Deep learning; Machine learning; Dental images; Convolutional neural network; COMPROMISED TEETH; NEURAL-NETWORKS; CLASSIFICATION; HEALTH;
D O I
10.1016/j.eswa.2022.116968
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: With the advent of deep learning in modern computing there has been unprecedented progress in image processing and segmentation. Deep learning-based image pattern recognition achieved a significant place in interpreting dental radiographs towards automatic diagnosis and treatment. In context with dental imaging, deep learning-based image analysis has been able to perform dental structure segmentation, classification, and identification of several common dental diseases with significant 90% accuracy. These results open a window of hope for better diagnosis and treatment planning in dental medicine. This review systematically presents recent advances in deep learning-based dental and maxillofacial image analysis. Materials and methods: We performed an extensive literature survey using the PubMed literature repository for identifying suitable articles. We shortlisted more than 75 articles that use deep learning for dental image seg-mentation, object detection, classification, and other image processing-related tasks. This study includes vari-ables such as the size of the dataset, dental imaging modality, deep learning architecture, and performance evaluation measures. Results: We have summarized recent developments and a concise overview of studies on various applications of dental and maxillofacial image analysis. We primarily discussed how deep learning techniques have been exploited in areas such as tooth detection and labeling, dental caries, plaque, periodontal condition, osteoporosis, oral lesion, anatomical landmarking, age, and gender estimation. The challenges and future research directions in the area have been extensively discussed. Conclusion: Undoubtedly remarkable progress is witnessed in dental image analysis in recent years. However, many crucial aspects still need to be addressed including standardization of data and generalization in AI-based solutions towards dental and maxillofacial image analysis for the diagnosis and better treatment aid in the field of dentistry which will open a new avenue in dental clinical practices.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Progress in deep learning-based dental and maxillofacial image analysis: A systematic review
    Singh, Nripendra Kumar
    Raza, Khalid
    Expert Systems with Applications, 2022, 199
  • [2] Deep learning-based electroencephalography analysis: a systematic review
    Roy, Yannick
    Banville, Hubert
    Albuquerque, Isabela
    Gramfort, Alexandre
    Falk, Tiago H.
    Faubert, Jocelyn
    JOURNAL OF NEURAL ENGINEERING, 2019, 16 (05)
  • [3] Addressing fairness issues in deep learning-based medical image analysis: a systematic review
    Xu, Zikang
    Li, Jun
    Yao, Qingsong
    Li, Han
    Zhao, Mingyue
    Zhou, S. Kevin
    NPJ DIGITAL MEDICINE, 2024, 7 (01):
  • [4] Deep learning-based facial image analysis in medical research: a systematic review protocol
    Su, Zhaohui
    Liang, Bin
    Shi, Feng
    Gelfond, J.
    Segalo, Sabina
    Wang, Jing
    Jia, Peng
    Hao, Xiaoning
    BMJ OPEN, 2021, 11 (11):
  • [5] Integration of deep learning-based image analysis and genomic data in cancer pathology: A systematic review
    Schneider, Lucas
    Laiouar-Pedari, Sara
    Kuntz, Sara
    Krieghoff-Henning, Eva
    Hekler, Achim
    Kather, Jakob N.
    Gaiser, Timo
    Froehling, Stefan
    Brinker, Titus J.
    EUROPEAN JOURNAL OF CANCER, 2022, 160 : 80 - 91
  • [6] Deep learning-based fundus image analysis for cardiovascular disease: a review
    Chikumba, Symon
    Hu, Yuqian
    Luo, Jing
    THERAPEUTIC ADVANCES IN CHRONIC DISEASE, 2023, 14
  • [7] A systematic review and analysis of deep learning-based underwater object detection
    Xu, Shubo
    Zhang, Minghua
    Song, Wei
    Mei, Haibin
    He, Qi
    Liotta, Antonio
    NEUROCOMPUTING, 2023, 527 : 204 - 232
  • [8] Review of Deep Learning-Based Image Inpainting Techniques
    Yang, Jing
    Ruhaiyem, Nur Intan Raihana
    IEEE ACCESS, 2024, 12 : 138441 - 138482
  • [9] Deep learning-based lung image registration: A review
    Xiao, Hanguang
    Xue, Xufeng
    Zhu, Mi
    Jiang, Xin
    Xia, Qingling
    Chen, Kai
    Li, Huanqi
    Long, Li
    Peng, Ke
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 165
  • [10] Review on Deep Learning-Based Face Analysis
    Talab, Mohammed Ahmed
    Tao, Hai
    Al-Saffar, Ahmed Ali Mohammed
    ADVANCED SCIENCE LETTERS, 2018, 24 (10) : 7630 - 7635