An so (3, R) Counterpart of the Dirac Soliton Hierarchy and its Bi-Integrable Couplings

被引:8
|
作者
Zhang, Wen-Ying [1 ]
Ma, Wen-Xiu [2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Hamiltonian structure; Bi-integrable couplings; Symmetry; Conservation law; Matrix loop algebra; SEMIDIRECT SUMS; ALGEBRAS;
D O I
10.1007/s10773-014-2172-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a counterpart hierarchy of the Dirac soliton hierarchy from zero curvature equations associated with a matrix spectral problem from so (3, a"e). Inspired by a special class of non-semisimple loop algebras, we construct a hierarchy of bi-integrable couplings for the counterpart soliton hierarchy. By applying the variational identities which cope with the enlarged Lax pairs, we generate the corresponding Hamiltonian structure for the hierarchy of the resulting bi-integrable couplings. To show Liouville integrability, infinitely many commuting symmetries and conserved densities are presented for the counterpart soliton hierarchy and its hierarchy of bi-integrable couplings.
引用
收藏
页码:4211 / 4222
页数:12
相关论文
共 50 条
  • [1] An so (3, ℝ) Counterpart of the Dirac Soliton Hierarchy and its Bi-Integrable Couplings
    Wen-Ying Zhang
    Wen-Xiu Ma
    International Journal of Theoretical Physics, 2014, 53 : 4211 - 4222
  • [2] Bi-Integrable and Tri-Integrable Couplings of a Soliton Hierarchy Associated with SO(3)
    Zhang, Jian
    Zhang, Chiping
    Cui, Yunan
    ADVANCES IN MATHEMATICAL PHYSICS, 2017, 2017
  • [3] Bi-Integrable Couplings of a New Soliton Hierarchy Associated with SO(4)
    Cao, Yan
    Chen, Liangyun
    He, Baiying
    ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [4] Bi-integrable and tri-integrable couplings of a soliton hierarchy associated with SO(4)
    Zhang, Jian
    Zhang, Chiping
    Cui, Yunan
    OPEN MATHEMATICS, 2017, 15 : 203 - 217
  • [5] Bi-Integrable Couplings Associated with so(3,R)
    McAnally, Morgan
    Ma, Wen-Xiu
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 1921 - 1935
  • [6] AN INTEGRABLE SO(3, R)-COUNTERPART OF THE HEISENBERG SOLITON HIERARCHY
    Ma, Wen-Xiu
    Shen, Shou Feng
    Yu, Shui Meng
    Zhang, Hui Qun
    Zhang, Wen Ying
    REPORTS ON MATHEMATICAL PHYSICS, 2014, 74 (03) : 283 - 299
  • [7] Integrable couplings, bi-integrable couplings and their Hamiltonian structures of the Giachetti-Johnson soliton hierarchy
    Tang, Ya-Ning
    Wang, Lei
    Ma, Wen-Xiu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (11) : 2305 - 2315
  • [8] Nonlinear bi-integrable couplings of a generalized Kaup-Newell type soliton hierarchy
    Guan, Xue
    Zhang, Huiqun
    Liu, Wenjun
    OPTIK, 2018, 172 : 1003 - 1011
  • [9] Bi-integrable couplings of a Kaup-Newell type soliton hierarchy and their bi-Hamiltonian structures
    Yu, Shuimeng
    Yao, Yuqin
    Shen, Shoufeng
    Ma, Wen-Xiu
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 23 (1-3) : 366 - 377
  • [10] An integrable counterpart of the D-AKNS soliton hierarchy from so(3, R)
    Ma, Wen-Xiu
    PHYSICS LETTERS A, 2014, 378 (24-25) : 1717 - 1720