The ionospheric equatorial electrojets generated by low latitude thunderstorms

被引:4
|
作者
Denisenko, Valery V. [1 ]
Rycroft, Michael J. [2 ]
机构
[1] Russian Acad Sci, Siberian Branch, Inst Computat Modelling, Krasnoyarsk 660036, Russia
[2] CAESAR Consultancy, 35 Millington Rd, Cambridge CB3 9HW, England
基金
俄罗斯基础研究基金会;
关键词
Thunderstorms; Global electric circuit; Ionospheric conductors; Equatorial electrojets; GLOBAL ELECTRIC-CIRCUIT; FIELD; MODEL; EEJ; SQ;
D O I
10.1016/j.jastp.2021.105704
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A mathematical model is constructed of the equatorial electrojets flowing in the ionosphere which are generated by thunderstorms occurring at low latitudes. We use the narrow definition of the global electric circuit (GEC) that includes only atmospheric and ionospheric electric fields and currents generated by thunderstorms, and ignores the contributions of all ionospheric and magnetospheric generators. The ionospheric currents which distribute charges from the thunderstorm areas to the fair weather parts of the Earth are largest in the vicinity of the geomagnetic equator. They form the specific electrojets discussed here which are in addition to the electrojets formed by the wind dynamo. A model of the ionospheric potential which drives these currents was developed earlier and this is suitably modified here. We use an empirical model of the diurnal variation of the number of lightning strikes to define the currents up to the ionosphere from the main thunderstorm areas. A twodimensional approximation of the ionospheric conductor is based on its high conductivity along the magnetic field. The Pedersen and Hall conductivity distributions are calculated using empirical ionospheric models; the Pedersen and Hall conductances are calculated by integration along magnetic field lines and these are used in the 2-D model of the ionospheric conductor. The spatial distributions of the ionospheric electric fields and currents are obtained by numerical solution of the 2-D ionospheric current continuity equation. The positions and the directions of the electrojets are defined by the global distribution of the main thunderstorm areas, as well as of the ionospheric conductivity, and so they strongly vary with Universal Time. As far as the generation of the equatorial electrojets is concerned, the African and Asian thunderstorm areas are more effective than the American ones since they are closest to the geomagnetic equator. There are day-time electrojets, the strength of which may be up to 175 A, and night-time ones (of up to 60 A), while the total current flowing in the GEC is not larger than 1400 A at any moment of time in our model. Usually the electrojets are a few times weaker in the night-time ionosphere because of its smaller conductivity. The equatorial electrojets of the GEC thus produce magnetic perturbations on the ground, which are in the 0.1 nT range, while there are one hundred times stronger, wind dynamo-driven electrojets and other larger, space weather-associated magnetic perturbations. Nevertheless, using their specific features these magnetic perturbations could be measured, especially at the night-time geomagnetic equator when and where they are not so disguised by other ionospheric currents.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Seasonal dependence of the equatorial electrojets generated by thunderstorms
    Denisenko, Valery V.
    Rycroft, Michael J.
    ADVANCES IN SPACE RESEARCH, 2024, 73 (07) : 3464 - 3471
  • [2] THE EFFECT OF HIGH-LATITUDE SOURCES ON FORMATION OF EQUATORIAL ELECTROJETS
    DENISENKO, BB
    ZAMAI, SS
    GEOMAGNETIZM I AERONOMIYA, 1987, 27 (05): : 840 - 842
  • [3] Equatorial counter electrojets and polar stratospheric sudden warmings - a classical example of high latitude-low latitude coupling?
    Vineeth, C.
    Pant, T. Kumar
    Sridharan, R.
    ANNALES GEOPHYSICAE, 2009, 27 (08) : 3147 - 3153
  • [4] WAVE DISTURBANCES IN THE LOW LATITUDE IONOSPHERE AND EQUATORIAL IONOSPHERIC PLASMA DEPLETIONS
    SOBRAL, JHA
    ABDU, MA
    BATISTA, IS
    ZAMLUTTI, CJ
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1981, 86 (NA3): : 1374 - 1378
  • [5] Characterization of ionospheric irregularities over the equatorial and low latitude Nigeria region
    Aghogho Ogwala
    Oluwole John Oyedokun
    Andrew Ovie Akala
    Paul Obiakara Amaechi
    K. G. Simi
    Sampad Kumar Panda
    Cornelius Ogabi
    Emmanuel Olufemi Somoye
    Astrophysics and Space Science, 2022, 367
  • [6] EQUATORIAL ELECTROJET CONTROL ON THE LOW LATITUDE IONOSPHERIC TOTAL ELECTRON CONTENT
    SETHIA, G
    CHANDRA, H
    RASTOGI, RG
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-EARTH AND PLANETARY SCIENCES, 1979, 88 (02): : 87 - 91
  • [7] Ionospheric response to an intense solar flare in equatorial and low latitude region
    Vishnu S. Rathore
    Sanjay Kumar
    Ashutosh K. Singh
    Abhay Kumar Singh
    Indian Journal of Physics, 2018, 92 : 1213 - 1222
  • [8] Ionospheric response to an intense solar flare in equatorial and low latitude region
    Rathore, V. S.
    Kumar, S.
    Singh, A. K.
    Singh, A. K.
    INDIAN JOURNAL OF PHYSICS, 2018, 92 (10) : 1213 - 1222
  • [9] Characterization of ionospheric irregularities over the equatorial and low latitude Nigeria region
    Ogwala, Aghogho
    Oyedokun, Oluwole John
    Akala, Andrew Ovie
    Amaechi, Paul Obiakara
    Simi, K. G.
    Panda, Sampad Kumar
    Ogabi, Cornelius
    Somoye, Emmanuel Olufemi
    ASTROPHYSICS AND SPACE SCIENCE, 2022, 367 (08)
  • [10] Ionospheric Irregularities and Acoustic/Gravity Wave Activity Above Low-Latitude Thunderstorms
    Lay, Erin H.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (01) : 90 - 97