On the quasi-steady-state approximation in an open Michaelis-Menten reaction mechanism

被引:11
|
作者
Eilertsen, Justin [1 ]
Roussel, Marc R. [2 ]
Schnell, Santiago [1 ,3 ]
Walcher, Sebastian [4 ]
机构
[1] Univ Michigan, Dept Mol & Integrat Physiol, Sch Med, Ann Arbor, MI 49109 USA
[2] Univ Lethbridge, Alberta RNA Res & Training Inst, Dept Chem & Biochem, Lethbridge, AB T1K 3M4, Canada
[3] Univ Michigan, Dept Computat Med & Bioinformat, Sch Med, Ann Arbor, MI 49109 USA
[4] Rhein Westfal TH Aachen, Math A, D-52056 Aachen, Germany
来源
AIMS MATHEMATICS | 2021年 / 6卷 / 07期
基金
加拿大自然科学与工程研究理事会;
关键词
singular perturbation; slow manifold; quasi-steady state; Michaelis-Menten mechanism; critical manifold; Gronwall lemma; Poincare sphere; INVARIANT-MANIFOLDS; PERTURBATION; REDUCTION; ASSUMPTION; GEOMETRY; KINETICS; SYSTEMS; MODEL;
D O I
10.3934/math.2021398
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The conditions for the validity of the standard quasi-steady-state approximation in the Michaelis-Menten mechanism in a closed reaction vessel have been well studied, but much less so the conditions for the validity of this approximation for the system with substrate inflow. We analyze quasi-steady-state scenarios for the open system attributable to singular perturbations, as well as less restrictive conditions. For both settings we obtain distinguished invariant manifolds and time scale estimates, and we highlight the special role of singular perturbation parameters in higher order approximations of slow manifolds. We close the paper with a discussion of distinguished invariant manifolds in the global phase portrait.
引用
收藏
页码:6781 / 6814
页数:34
相关论文
共 50 条