The asymptotic behavior of an inertial alternating proximal algorithm for monotone inclusions

被引:2
|
作者
Moudafi, Abdellatif [1 ]
机构
[1] Univ Antilles Guyane, CEREGMIA, BP 7209, Schoelcher 97275, Martinique, France
关键词
Maximal monotone operators; Alternating proximal algorithm; Alternating projection methods; Joint minimization; Equilibrium problems;
D O I
10.1016/j.aml.2010.01.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to investigate the asymptotic behavior of an inertial alternating algorithm based on the composition of resolvents of monotone operators. The proposed algorithm is a generalization of those proposed in Attouch et al. (2007) [3] and Bauschke et al. (2005) [1]. As a special case, we also recover the classical alternating minimization algorithm (Acker, 1980) [2], which itself is a natural extension of the alternating projection algorithm of von Neumann (1950) [4]. An application to equilibrium problems is also proposed. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:620 / 624
页数:5
相关论文
共 50 条
  • [1] A hybrid inertial and contraction proximal point algorithm for monotone variational inclusions
    Dey, Soumitra
    NUMERICAL ALGORITHMS, 2023, 93 (01) : 1 - 25
  • [2] A hybrid inertial and contraction proximal point algorithm for monotone variational inclusions
    Soumitra Dey
    Numerical Algorithms, 2023, 93 : 1 - 25
  • [3] A new inertial-type hybrid projection-proximal algorithm for monotone inclusions
    Mainge, Paul-Emile
    Merabet, Nora
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (09) : 3149 - 3162
  • [4] An Inertial Forward-Backward Algorithm for Monotone Inclusions
    Lorenz, Dirk A.
    Pock, Thomas
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2015, 51 (02) : 311 - 325
  • [5] An Inertial Forward-Backward Algorithm for Monotone Inclusions
    Dirk A. Lorenz
    Thomas Pock
    Journal of Mathematical Imaging and Vision, 2015, 51 : 311 - 325
  • [6] WEAK AND LINEAR CONVERGENCE OF A GENERALIZED PROXIMAL POINT ALGORITHM WITH ALTERNATING INERTIAL STEPS FOR A MONOTONE INCLUSION PROBLEM
    Shehu, Yekini
    Ezeora, Jeremiah N.
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2021, 5 (06): : 881 - 892
  • [7] Inexact Inertial Proximal Algorithm for Maximal Monotone Operators
    Khatibzadeh, Hadi
    Ranjbar, Sajad
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2015, 23 (02): : 133 - 146
  • [8] A proximal algorithm for solving split monotone variational inclusions
    School of Mathematical Sciences, Tianjin Polytechnic University, Tianjin
    300387, China
    不详
    不详
    750021, China
    1600, Politechnica University of Bucharest, Splaiul Independentei 313 - Sector 6, Bucharest, 77206, Romania (82): : 43 - 52
  • [9] A PROXIMAL ALGORITHM FOR SOLVING SPLIT MONOTONE VARIATIONAL INCLUSIONS
    Zhao, Xiaopeng
    Yao, Jen-Chih
    Yao, Yonghong
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (03): : 43 - 52
  • [10] Strong convergence of an inertial algorithm for maximal monotone inclusions with applications
    Chidume C.E.
    Adamu A.
    Nnakwe M.O.
    Fixed Point Theory and Applications, 2020 (1)