A Urysohn-type theorem and the Bishop-Phelps-Bollobas theorem for holomorphic functions

被引:6
|
作者
Kim, Sun Kwang [1 ]
Lee, Han Ju [2 ]
机构
[1] Chungbuk Natl Univ, Dept Math, 1 Chungdae Ro, Cheongju 28644, Chungbuk, South Korea
[2] Dongguk Univ Seoul, Dept Math Educ, 30 Pildong Ro 1 Gil, Seoul 04620, South Korea
基金
新加坡国家研究基金会;
关键词
Peak point; Strong peak points; Uryshon lemma; Holomorphic functions; Bishop-Phelps-Bollobas theorem;
D O I
10.1016/j.jmaa.2019.123393
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Urysohn-type theorem is introduced for a subalgebra of the algebra C-b (Omega) of all bounded complex-valued continuous functions on a Hausdorff topological space Omega. With use of this theorem, it is shown that a type of the Bishop-Phelps-Bollobas theorem holds for certain classes of holomorphic functions on the unit ball of a complex Banach space X if X is either a locally uniformly convex space or a locally c-uniformly convex, order-continuous sequence space. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A NONLINEAR BISHOP-PHELPS-BOLLOBAS TYPE THEOREM
    Dantas, Sheldon
    Garcia, Domingo
    Kim, Sun Kwang
    Kim, Un Young
    Lee, Han Ju
    Maestre, Manuel
    QUARTERLY JOURNAL OF MATHEMATICS, 2019, 70 (01): : 7 - 16
  • [2] A Bishop-Phelps-Bollobas type theorem for uniform algebras
    Cascales, B.
    Guirao, A. J.
    Kadets, V.
    ADVANCES IN MATHEMATICS, 2013, 240 : 370 - 382
  • [3] A Bishop-Phelps-Bollobas Theorem for Asplund Operators
    Cheng, Li Xin
    Cheng, Qing Jin
    Xu, Kang Kang
    Zhang, Wen
    Zheng, Zhe Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (07) : 765 - 782
  • [4] On the Bishop-Phelps-Bollobas theorem for multilinear mappings
    Dantas, Sheldon
    Garcia, Domingo
    Kim, Sun Kwang
    Lee, Han Ju
    Maestre, Manuel
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 532 : 406 - 431
  • [5] THE BISHOP-PHELPS-BOLLOBAS THEOREM AND ASPLUND OPERATORS
    Aron, R. M.
    Cascales, B.
    Kozhushkina, O.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) : 3553 - 3560
  • [6] THE BISHOP-PHELPS-BOLLOBAS THEOREM FOR BILINEAR FORMS
    Acosta, Maria D.
    Becerra-Guerrero, Julio
    Garcia, Domingo
    Maestre, Manuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (11) : 5911 - 5932
  • [7] Simultaneously continuous retraction and Bishop-Phelps-Bollobas type theorem
    Kim, Sun Kwang
    Lee, Han Ju
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) : 758 - 771
  • [8] On the Bishop-Phelps-Bollobas theorem for operators and numerical radius
    Kim, Sun Kwang
    Lee, Han Ju
    Martin, Miguel
    STUDIA MATHEMATICA, 2016, 233 (02) : 141 - 151
  • [9] The Bishop-Phelps-Bollobas theorem for operators on L1(μ)
    Choi, Yun Sung
    Kim, Sun Kwang
    Lee, Han Ju
    Martin, Miguel
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (01) : 214 - 242
  • [10] The Bishop-Phelps-Bollobas theorem on bounded closed convex sets
    Cho, Dong Hoon
    Choi, Yun Sung
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 93 : 502 - 518