Graphene's Partial Transparency to van der Waals and Electrostatic Interactions

被引:15
|
作者
Ghoshal, Debjit [1 ]
Jain, Rishabh [2 ]
Koratkar, Nikhil A. [2 ,3 ]
机构
[1] Rensselaer Polytech Inst, Dept Chem & Biol Engn, 110 Eighth St, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, 110 Eighth St, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Dept Mat Sci & Engn, 110 Eighth St, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
WETTING TRANSPARENCY; WETTABILITY; FILMS;
D O I
10.1021/acs.langmuir.9b01887
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene is the thinnest known two-dimensional (2D) material. This thinness is responsible for graphene's well-known optical transparency. In addition to being transparent to light, its extreme thinness and nonpolar nature also render graphene partially transparent to van der Waals and electrostatic interactions. This enables media present on opposite sides of a graphene sheet to sense or feel each other and be influenced by each other. Such crosstalk between materials separated by an impermeable barrier is impossible for typical barrier or coating materials that are usually thick enough to completely screen out such interactions. In this article, we review graphene's partial transparency to atomic interactions at the liquid-solid, solid-solid, and liquid-liquid interfaces. We compare graphene with other 2D materials such as hexagonal boron nitride and show that the extent of graphene's transparency is strongly dependent on the nature and interaction range of the materials placed on opposite sides of the graphene layer. We end with recommendations for future research to better understand the underlying science and to develop practical applications of this exciting phenomena.
引用
收藏
页码:12306 / 12316
页数:11
相关论文
共 50 条
  • [1] Electrostatic and Van Der Waals Interactions of Nanoparticles in Electrolytes
    Filippov, A. V.
    Starov, V. M.
    JETP LETTERS, 2023, 117 (08) : 598 - 605
  • [2] Electrostatic and Van Der Waals Interactions of Nanoparticles in Electrolytes
    A. V. Filippov
    V. M. Starov
    JETP Letters, 2023, 117 : 598 - 605
  • [3] Toner adhesion: Effects of electrostatic and van der Waals interactions
    Rimai, DS
    Ezenyilimba, M
    Goebel, WK
    Cormier, S
    Quesnel, DJ
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2002, 46 (03) : 200 - 207
  • [4] Graphene fatigue through van der Waals interactions
    Cui, Teng
    Yip, Kevin
    Hassan, Aly
    Wang, Guorui
    Liu, Xingjian
    Sun, Yu
    Filleter, Tobin
    SCIENCE ADVANCES, 2020, 6 (42):
  • [5] Instability of nanocantilever arrays in electrostatic and van der Waals interactions
    Ramezani, Asghar
    Alasty, Aria
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (22)
  • [6] The adhesion of spherical toner: Electrostatic and van der Waals interactions
    Rimai, DS
    Ezenyilimba, M
    Goebel, WK
    Cormier, SO
    Quesnel, DJ
    IS&T'S NIP17: INTERNATIONAL CONFERENCE ON DIGITAL PRINTING TECHNOLOGIES, 2001, : 610 - 613
  • [7] van der Waals interactions mediating the cohesion of fullerenes on graphene
    Svec, M.
    Merino, P.
    Dappe, Y. J.
    Gonzalez, C.
    Abad, E.
    Jelinek, P.
    Martin-Gago, J. A.
    PHYSICAL REVIEW B, 2012, 86 (12)
  • [8] The adhesion of spherical particles: Contributions of van der Waals and electrostatic interactions
    Rimai, DS
    Quesnel, DJ
    JOURNAL OF ADHESION, 2002, 78 (05): : 413 - 429
  • [9] Research on the strengths of electrostatic and van der Waals interactions in ionic liquids
    Shi, Baoli
    Wang, Zhe
    Wen, Huiying
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 241 : 486 - 488
  • [10] Self-assembly of Binary Particles with Electrostatic and van der Waals Interactions
    Li, Yan
    Li, Hua-ping
    He, Xue-hao
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2014, 27 (04) : 419 - 427