Extraordinary Strain Hardening from Dislocation Loops in Defect-Free Al Nanocubes

被引:2
|
作者
Kiani, Mehrdad T. [1 ]
Aitken, Zachary H. [2 ]
Parakh, Abhinav [1 ]
Zhang, Yong-Wei [2 ]
Gu, X. Wendy [3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] ASTAR, Inst High Performance Comp, Singapore 138632, Singapore
[3] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
in situ scanning electron microscopy; yield strength; plasticity; ULTRAHIGH STRENGTH; NUCLEATION; DEFORMATION; SIMULATIONS; PLASTICITY; STRESS;
D O I
10.1021/acs.nanolett.2c00686
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The complex interaction of crystalline defects leads tostrain hardening in bulk metals. Metals with high stacking fault energy(SFE), such as aluminum, tend to have low strain hardening rates dueto an inability to form stacking faults and deformation twins. Here, weusein situscanning electron microscopy (SEM) mechanicalcompressions tofind that colloidally synthesized defect-free 114 nmAl nanocubes combine a high linear strain hardening rate of 4.1 GPawith a high strength of 1.1 GPa. These nanocubes have a 3 nm self-passivating oxide layer that has a large influence on mechanical behaviorand the accumulation of dislocation structures. Postcompressiontransmission electron microcopy (TEM) imaging reveals stableprismatic dislocation loops and the absence of stacking faults. MDsimulations relate the formation of dislocation loops and strainhardening to the surface oxide. These results indicate that slight modifications to surface and interfacial properties can induceenormous changes to mechanical properties in high SFE metals
引用
收藏
页码:4036 / 4041
页数:6
相关论文
共 50 条
  • [1] Theory of the defect-free phason strain in quasicrystals
    Rochal, SB
    Kozinkina, YA
    PHYSICAL REVIEW B, 2005, 72 (02):
  • [2] Imperfect oriented attachment: Dislocation generation in defect-free nanocrystals
    Penn, RL
    Banfield, JF
    SCIENCE, 1998, 281 (5379) : 969 - 971
  • [3] Self-energy of elliptical dislocation loops in anisotropic crystals and its application for defect-free core/shell nanowires
    Chu, H. J.
    Wang, J.
    Zhou, C. Z.
    Beyerlein, I. J.
    ACTA MATERIALIA, 2011, 59 (18) : 7114 - 7124
  • [4] Dislocation mean free paths and strain hardening of crystals
    Devincre, B.
    Hoc, T.
    Kubin, L.
    SCIENCE, 2008, 320 (5884) : 1745 - 1748
  • [5] STRESS-STRAIN RELATIONSHIP FOR DEFECT-FREE TIMBER BEAMS
    ANDERSON, JA
    WOOD SCIENCE, 1981, 14 (01): : 23 - 31
  • [6] GROWTH OF DEFECT LOOPS IN DISLOCATION-FREE SILICON SINGLE CRYSTALS
    ZARIFYAN.ZA
    MILEVSKI.LS
    SOVIET PHYSICS CRYSTALLOGRAPHY, USSR, 1971, 16 (03): : 493 - &
  • [7] Defect-Free Single-Crystal SiGe: A New Material from Nanomembrane Strain Engineering
    Paskiewicz, Deborah M.
    Tanto, Boy
    Savage, Donald E.
    Lagally, Max G.
    ACS NANO, 2011, 5 (07) : 5814 - 5822
  • [8] ON THE KINETICS OF GROWTH OF DEFECT-FREE CRYSTALS FROM A MELT
    OVRUTSKY, AM
    KRISTALLOGRAFIYA, 1981, 26 (02): : 422 - 424
  • [9] Ultrahigh Strength of Dislocation-Free Ni3Al Nanocubes
    Maass, Robert
    Meza, Lucas
    Gan, Bin
    Tin, Sammy
    Greer, Julia R.
    SMALL, 2012, 8 (12) : 1869 - 1875
  • [10] Defect-free strain relaxation in locally MBE-grown SiGe heterostructures
    Rupp, T
    Kaesen, F
    Hansch, W
    Hammerl, E
    Gravesteijn, DJ
    Schorer, R
    Silveira, E
    Abstreiter, G
    Eisele, I
    THIN SOLID FILMS, 1997, 294 (1-2) : 27 - 32