Experimental quantum key distribution certified by Bell's theorem

被引:131
|
作者
Nadlinger, D. P. [1 ]
Drmota, P. [1 ]
Nichol, B. C. [1 ]
Araneda, G. [1 ]
Main, D. [1 ]
Srinivas, R. [1 ]
Lucas, D. M. [1 ]
Ballance, C. J. [1 ]
Ivanov, K. [2 ]
Tan, E. Y-Z [3 ]
Sekatski, P. [4 ]
Urbanke, R. L. [2 ]
Renner, R. [3 ]
Sangouard, N. [5 ]
Bancal, J-D [5 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Oxford, England
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, Lausanne, Switzerland
[3] Swiss Fed Inst Technol, Inst Theoret Phys, Zurich, Switzerland
[4] Univ Geneva, Dept Appl Phys, Geneva, Switzerland
[5] Univ Paris Saclay, Inst Phys Theor, CNRS, CEA, Gif Sur Yvette, France
基金
英国工程与自然科学研究理事会; 瑞士国家科学基金会;
关键词
D O I
10.1038/s41586-022-04941-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cryptographic key exchange protocols traditionally rely on computational conjectures such as the hardness of prime factorization(1) to provide security against eavesdropping attacks. Remarkably, quantum key distribution protocols such as the Bennett-Brassard scheme(2) provide information-theoretic security against such attacks, a much stronger form of security unreachable by classical means. However, quantum protocols realized so far are subject to a new class of attacks exploiting a mismatch between the quantum states or measurements implemented and their theoretical modelling, as demonstrated in numerous experiments(3-6). Here we present the experimental realization of a complete quantum key distribution protocol immune to these vulnerabilities, following Ekert's pioneering proposal(7) to use entanglement to bound an adversary's information from Bell's theorem(8). By combining theoretical developments with an improved optical fibre link generating entanglement between two trapped-ion qubits, we obtain 95,628 key bits with device-independent security(9-12) from 1.5 million Bell pairs created during eight hours of run time. We take steps to ensure that information on the measurement results is inaccessible to an eavesdropper. These measurements are performed without space-like separation. Our result shows that provably secure cryptography under general assumptions is possible with real-world devices, and paves the way for further quantum information applications based on the device-independence principle.
引用
收藏
页码:682 / +
页数:6
相关论文
共 50 条
  • [1] Experimental quantum key distribution certified by Bell's theorem
    D. P. Nadlinger
    P. Drmota
    B. C. Nichol
    G. Araneda
    D. Main
    R. Srinivas
    D. M. Lucas
    C. J. Ballance
    K. Ivanov
    E. Y.-Z. Tan
    P. Sekatski
    R. L. Urbanke
    R. Renner
    N. Sangouard
    J.-D. Bancal
    Nature, 2022, 607 : 682 - 686
  • [2] From Bell's theorem to secure quantum key distribution
    Acin, Antonio
    Gisin, Nicolas
    Masanes, Lluis
    PHYSICAL REVIEW LETTERS, 2006, 97 (12)
  • [3] Experimental quantum key distribution based on a Bell test
    Ling, Alexander
    Peloso, Matthew P.
    Marcikic, Ivan
    Scarani, Valerio
    Lamas-Linares, Antia
    Kurtsiefer, Christian
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [4] Random numbers certified by Bell’s theorem
    S. Pironio
    A. Acín
    S. Massar
    A. Boyer de la Giroday
    D. N. Matsukevich
    P. Maunz
    S. Olmschenk
    D. Hayes
    L. Luo
    T. A. Manning
    C. Monroe
    Nature, 2010, 464 : 1021 - 1024
  • [5] Random numbers certified by Bell's theorem
    Pironio, S.
    Acin, A.
    Massar, S.
    de la Giroday, A. Boyer
    Matsukevich, D. N.
    Maunz, P.
    Olmschenk, S.
    Hayes, D.
    Luo, L.
    Manning, T. A.
    Monroe, C.
    NATURE, 2010, 464 (7291) : 1021 - 1024
  • [6] Bell's inequality, random sequence, and quantum key distribution
    Hwang, WY
    PHYSICAL REVIEW A, 2005, 71 (05):
  • [7] Quantum kaleidoscopes and Bell's theorem
    Aravind, P. K.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (11-13): : 1711 - 1729
  • [8] Quantum key distribution by comparing Bell states
    Gao, Gan
    OPTICS COMMUNICATIONS, 2008, 281 (04) : 876 - 879
  • [9] Classical probabilistic realization of "Random Numbers Certified by Bell's Theorem"
    Khrennikov, Andrei
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626
  • [10] Bell's theorem, information and quantum physics
    Zeilinger, A
    QUANTUM (UN)SPEAKABLES FROM BELL TO QUANTUM INFORMATION, 2002, : 241 - 254