Sequential Monte Carlo-guided ensemble tracking

被引:1
|
作者
Wang, Yuru [1 ]
Liu, Qiaoyuan [1 ]
Jiang, Longkui [2 ]
Yin, Minghao [1 ]
Wang, Shengsheng [3 ]
机构
[1] North East Normal Univ, Comp Sci & Informat Technol, Changchun, Jilin Province, Peoples R China
[2] Jilin Business & Technol Coll, Sch Informat Engn, Changchun, Jilin Province, Peoples R China
[3] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun, Jilin Province, Peoples R China
来源
PLOS ONE | 2017年 / 12卷 / 04期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1371/journal.pone.0173297
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A great deal of robustness is allowed when visual tracking is considered as a classification problem. This paper combines a finite number of weak classifiers in a SMC framework as a strong classifier. The time-varying ensemble parameters (confidence of weak classifiers) are regarded as sequential arriving states and their posterior distribution is estimated in a Bayesian manner. Therefore, both the adaptiveness and stability are kept for the ensemble classification in handling scene changes and target deformation. Moreover, to increase the tracking accuracy, weak classifiers including Support Vector Machine (SVM) and Large Margin Distribution Machine (LDM) are combined as a hybrid strong one, with adaptiveness to the sample scales. Comprehensive experiments are performed on benchmark videos with various tracking challenges, and the proposed method is demonstrated to be better than or comparable to the state-of-the-art trackers.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Bootstrapping sequential Monte Carlo tracking
    Moeslund, TB
    Granum, E
    IMAGE ANALYSIS, PROCEEDINGS, 2003, 2749 : 1030 - 1037
  • [2] Harmonic tracking using sequential Monte Carlo
    Dubois, Corentin
    Davy, Manuel
    2005 IEEE/SP 13th Workshop on Statistical Signal Processing (SSP), Vols 1 and 2, 2005, : 1212 - 1216
  • [3] Markov Chain Monte Carlo Modular Ensemble Tracking
    Penne, Thomas
    Tilmant, Christophe
    Chateau, Thierry
    Barra, Vincent
    IMAGE AND VISION COMPUTING, 2013, 31 (6-7) : 434 - 447
  • [4] Tempo tracking and rhythm quantization by sequential Monte Carlo
    Cemgil, AT
    Kappen, B
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1361 - 1368
  • [5] Sequential Monte Carlo framework for extended object tracking
    Vermaak, J
    Ikoma, N
    Godsill, SJ
    IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION, 2005, 152 (05) : 353 - 363
  • [6] Sparse index tracking using sequential Monte Carlo
    Satpathy, Tanmay
    Shah, Rushabh
    QUANTITATIVE FINANCE, 2022, 22 (09) : 1579 - 1592
  • [7] Novel sequential Monte Carlo method to target tracking
    School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
    Dianzi Yu Xinxi Xuebao, 2007, 9 (2120-2123): : 2120 - 2123
  • [8] Sequential Monte Carlo for manoeuvring target tracking in clutter
    Gordon, NJ
    Doucet, A
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 : 493 - 500
  • [9] Ensemble Kalman filter based sequential Monte Carlo sampler for sequential Bayesian inference
    Wu, Jiangqi
    Wen, Linjie
    Green, Peter L.
    Li, Jinglai
    Maskell, Simon
    STATISTICS AND COMPUTING, 2022, 32 (01)
  • [10] Ensemble Kalman filter based sequential Monte Carlo sampler for sequential Bayesian inference
    Jiangqi Wu
    Linjie Wen
    Peter L. Green
    Jinglai Li
    Simon Maskell
    Statistics and Computing, 2022, 32