Structure of ice confined in silica nanopores

被引:4
|
作者
Mohammed, Sohaib [1 ]
Asgar, Hassnain [1 ]
Benmore, Chris J. [2 ]
Gadikota, Greeshma [1 ]
机构
[1] Cornell Univ, Sch Civil & Environm Engn, Ithaca, NY 14853 USA
[2] Argonne Natl Lab, Adv Photon Source, Lemont, IL 60439 USA
关键词
X-RAY-DIFFRACTION; LIQUID PHASE-TRANSITION; MELTING TEMPERATURE; MOLECULAR-DYNAMICS; SUPERCOOLED WATER; MESOPOROUS SILICA; CARBON NANOTUBES; PORE; SIMULATION; RANGE;
D O I
10.1039/d1cp00686j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Observed anomalous thermodynamic properties of confined water such as deviations in the melting point and freezing point motivate the determination of the structure of confined water as a function of pore size and temperature. In this study, we investigate the dynamic evolution of the structure of confined ice in SBA-15 porous materials with pore diameters of 4 nm, 6 nm, and 8 nm at temperatures ranging from 183 K to 300 K using in operando Wide-Angle X-Ray Scattering (WAXS) measurements, X-Ray Partial Distribution Function (PDF) measurements, and classical Molecular Dynamics (MD) simulations. Formation of hexagonal ice structures is noted in all the three pore sizes. In silica nanopores with diameters of 4 nm, cubic ice formation is noted in addition to hexagonal ice. Longer lasting hydrogen bonds and longer residence times of the water molecules in the first coordination shell contribute to observed crystalline organization of ice in confinement. Self-diffusion coefficients of confined liquid water, predicted from classical MD simulations, are four orders of magnitude higher compared to ice formed in confinement. These experimental and simulation results provide comprehensive insights underlying the organization of confined water and ice in silica nanopores and the underlying physico-chemical interactions that contribute to the observed structures.
引用
收藏
页码:12706 / 12717
页数:12
相关论文
共 50 条
  • [1] Structure of ice confined in carbon and silica nanopores
    Jazdzewska, Monika
    Sliwinska-Bartkowiak, Malgorzata
    Domin, Kamila
    Chudoba, Dorota M.
    Beskrovnyi, Anatoly I.
    Neov, Dimitr S.
    Gubbins, Keith E.
    BULLETIN OF MATERIALS SCIENCE, 2019, 42 (04)
  • [2] Structure of ice confined in carbon and silica nanopores
    Monika Jażdżewska
    Małgorzata Śliwińska-Bartkowiak
    Kamila Domin
    Dorota M Chudoba
    Anatoly I Beskrovnyi
    Dimitr S Neov
    Keith E Gubbins
    Bulletin of Materials Science, 2019, 42
  • [3] Structure and Dynamics of Benzene Confined in Silica Nanopores
    Coasne, Benoit
    Fourkas, John T.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (31): : 15471 - 15479
  • [4] Structure and dynamics of water confined in silica nanopores
    Milischuk, Anatoli A.
    Ladanyi, Branka M.
    JOURNAL OF CHEMICAL PHYSICS, 2011, 135 (17):
  • [5] Structure and dynamics of liquids confined in silica nanopores
    Milischuk, Anatoli A.
    Ladanyi, Branka M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [6] Structure and dynamics of liquid methanol confined within functionalized silica nanopores
    Dolores Elola, M.
    Rodriguez, Javier
    Laria, Daniel
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (15):
  • [7] Structure and dynamics of ethane confined in silica nanopores in the presence of CO2
    Liu, Tingting
    Gautam, Siddharth
    Cole, David R.
    Patankar, Sumant
    Tomasko, David
    Zhou, Wei
    Rother, Gernot
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (08):
  • [8] Structure and dynamics of water confined in silica nanopores (vol 135, 174709, 2011)
    Milischuk, Anatoli A.
    Ladanyi, Branka M.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (02):
  • [9] Freezing and Melting of Water Confined in Silica Nanopores
    Findenegg, Gerhard H.
    Jaehnert, Susanne
    Akcakayiran, Dilek
    Schreiber, Andreas
    CHEMPHYSCHEM, 2008, 9 (18) : 2651 - 2659
  • [10] Melting of gelatin gels confined to silica nanopores
    Prado, J. Rachel
    Chen, Jun
    Kharlampieva, Eugenia
    Vyazovkin, Sergey
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (42) : 29056 - 29063