Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals

被引:42
|
作者
Boehm, Janko [1 ]
Georgoudis, Alessandro [2 ]
Larsen, Kasper J. [3 ]
Schulze, Mathias [1 ]
Zhang, Yang [4 ,5 ]
机构
[1] TU Kaiserslautern, Dept Math, D-67663 Kaiserslautern, Germany
[2] Uppsala Univ, Dept Phys & Astron, SE-75108 Uppsala, Sweden
[3] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, Hants, England
[4] Swiss Fed Inst Technol, Wolfang Pauli Str 27, CH-8093 Zurich, Switzerland
[5] Johannes Gutenberg Univ Mainz, PRISMA Cluster Excellence, D-55128 Mainz, Germany
基金
欧洲研究理事会; 瑞士国家科学基金会;
关键词
DIFFERENTIAL-EQUATIONS;
D O I
10.1103/PhysRevD.98.025023
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Integration-by-parts identities between loop integrals arise from the vanishing integration of total derivatives in dimensional regularization. Generic choices of total derivatives in the Baikov or parametric representations lead to identities which involve dimension shifts. These dimension shifts can be avoided by imposing a certain constraint on the total derivatives. The solutions of this constraint turn out to be a specific type of syzygies which correspond to logarithmic vector fields along the Gram determinant formed of the independent external and loop momenta. We present an explicit generating set of solutions in Baikov representation, valid for any number of loops and external momenta, obtained from the Laplace expansion of the Gram determinant. We provide a rigorous mathematical proof that this set of solutions is complete. This proof relates the logarithmic vector fields in question to ideals of submaximal minors of the Gram matrix and makes use of classical resolutions of such ideals.
引用
收藏
页数:13
相关论文
共 19 条
  • [1] Integration-by-parts identities and differential equations for parametrised Feynman integrals
    Artico, Daniele
    Magnea, Lorenzo
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (03)
  • [2] LOGARITHMIC AND INTEGRATION-BY-PARTS OPERATORS
    APPLING, WDL
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A456 - A456
  • [3] ON INTEGRATION-BY-PARTS FOR WEIGHTED INTEGRALS
    WRIGHT, FM
    BAKER, JD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 22 (01) : 42 - &
  • [4] Integration-by-parts identities in FDR
    Pittau, Roberto
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (9-10): : 601 - 608
  • [5] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Dominik Bendle
    Janko Böhm
    Wolfram Decker
    Alessandro Georgoudis
    Franz-Josef Pfreundt
    Mirko Rahn
    Pascal Wasser
    Yang Zhang
    Journal of High Energy Physics, 2020
  • [6] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Bendle, Dominik
    Boehm, Janko
    Decker, Wolfram
    Georgoudis, Alessandro
    Pfreundt, Franz-Josef
    Rahn, Mirko
    Wasser, Pascal
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [7] ABSOLUTE CONTINUITY AND LOGARITHMIC AND INTEGRATION-BY-PARTS OPERATORS
    APPLING, WDL
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1987, 1A (01): : 69 - 76
  • [8] MAPPING THEOREM FOR LOGARITHMIC AND INTEGRATION-BY-PARTS OPERATORS
    APPLING, WDL
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 65 (01) : 85 - 88
  • [9] INTEGRATION-BY-PARTS AND SUBSTITUTION FOR INTEGRALS OF INTERVAL FUNCTIONS
    BAKER, JD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 140 - &
  • [10] NEATIBP 1.0, a package generating small-size integration-by-parts relations for Feynman integrals
    Wu, Zihao
    Boehm, Janko
    Ma, Rourou
    Xu, Hefeng
    Zhang, Yang
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 295