Semi-Empirical Soil Organic Matter Retrieval Model With Spectral Reflectance

被引:8
|
作者
Yuan, Jing [1 ,2 ]
Hu, Chunhui [1 ]
Yan, Changxiang [1 ,3 ]
Li, Zhizhong [4 ]
Chen, Shengbo [5 ]
Wang, Shurong [1 ]
Wang, Xin [1 ,2 ]
Xu, Zhengyuan [5 ]
Ju, Xueping [1 ,2 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[4] CGS, Shenyang Inst Geol & Mineral Resources, Shenyang 110034, Liaoning, Peoples R China
[5] Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130026, Jilin, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Soil organic matter retrieval; reflectance; semi-empirical model; KM; MACHINE LEARNING-METHODS; MOISTURE RETRIEVAL; CALIBRATION; PREDICTION; CARBON; INTERPOLATION; SPECTROSCOPY; TEXTURE;
D O I
10.1109/ACCESS.2019.2941258
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Rapid and accurate monitoring of soil organic matter (SOM) content is of great significance for precision fertilization of farmland. However, the SOM retrieval models are mainly established by statistical methods, which have limited application scope and incomplete theoretical foundation. Moreover, the accuracy of the SOM retrieval models remains raised. In this paper, for the first time, a semi-empirical SOM content retrieval model is constructed, which has certain theoretical basis, strong applicability and higher accuracy than before. Based on the Kubelka-Munk (KM) theory, the SOM retrieval model with the absorption coefficient k and scattering coefficient s related to SOM (r = k/s) is derived. The validity and reliability of the model are confirmed with validation set (n = 26) including three sorts of soils. Results show that the model can estimate SOM content in different sorts of soils with high prediction accuracy and good prediction ability (root mean square errors of prediction (RMSEP), coefficients of determination (R-2) and relative percentage deviation (RPD) values of 0.18%, 89.9% and 3.2, respectively) in the range of 552-950nm. The model provides an innovative method for predicting SOM content.
引用
收藏
页码:134164 / 134172
页数:9
相关论文
共 50 条
  • [1] A Semi-Empirical Model for Reflectance Spectral of Black Soil with Different Moisture Contents
    Yuan Jing
    Wang Xin
    Yan Chang-xiang
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39 (11) : 3514 - 3518
  • [2] DIFFUSE REFLECTANCE OF CLOUDS - SEMI-EMPIRICAL MODEL
    YOUNG, SJ
    APPLIED OPTICS, 1979, 18 (12) : 1881 - 1882
  • [3] Surface soil humidity retrieval by means of a semi-empirical coupled SAR model
    Capodici, F.
    La Loggia, G.
    D'Urso, G.
    Maltese, A.
    Ciraolo, G.
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XII, 2010, 7824
  • [5] Soil moisture retrieval using CYGNSS/SMAP data fusion semi-empirical model
    Zhang Y.
    Zhang D.
    Meng W.
    Gu J.
    Han Y.
    Yang S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (11): : 2873 - 2882
  • [6] A Semi-Empirical SNR Model for Soil Moisture Retrieval Using GNSS SNR Data
    Han, Mutian
    Zhu, Yunlong
    Yang, Dongkai
    Hong, Xuebao
    Song, Shuhui
    REMOTE SENSING, 2018, 10 (02)
  • [7] Semi-empirical model for permittivity of warm dense matter
    Veysman, M. E.
    Andreev, N. E.
    XXX INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2015), 2015, 653
  • [8] Semi-empirical proton binding constants for natural organic matter
    Matynia, Anthony
    Lenoir, Thomas
    Causse, Benjamin
    Spadini, Lorenzo
    Jacquet, Thierry
    Manceau, Alain
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2010, 74 (06) : 1836 - 1851
  • [9] A novel semi-empirical soil multi-factor radiative transfer model for soil organic matter estimation based on hyperspectral imagery
    Wu, Fuyu
    Tan, Kun
    Wang, Xue
    Ding, Jianwei
    Liu, Zhaoxian
    GEODERMA, 2023, 437
  • [10] A semi-empirical model for evaluating urban particulate matter concentrations
    Karppinen, A
    Härkönen, J
    Kukkonen, J
    AIR POLLUTION VII, 1999, 6 : 925 - 934