Tasks for artificial intelligence in prostate MRI

被引:19
|
作者
Belue, Mason J. [1 ]
Turkbey, Baris [1 ]
机构
[1] NCI, Mol Imaging Branch, Natl Inst Hlth Bethesda, 10 Ctr Dr,MSC 1182,Bldg 10,Room B3B85, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Artificial intelligence; Deep learning; Machine learning; Magnetic resonance imaging; Prostatic neoplasms; MULTI-PARAMETRIC MRI; SEGMENTATION; CANCER; DIAGNOSIS;
D O I
10.1186/s41747-022-00287-9
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
The advent of precision medicine, increasing clinical needs, and imaging availability among many other factors in the prostate cancer diagnostic pathway has engendered the utilization of artificial intelligence (AI). AI carries a vast number of potential applications in every step of the prostate cancer diagnostic pathway from classifying/improving prostate multiparametric magnetic resonance image quality, prostate segmentation, anatomically segmenting cancer suspicious foci, detecting and differentiating clinically insignificant cancers from clinically significant cancers on a voxel-level, and classifying entire lesions into Prostate Imaging Reporting and Data System categories/Gleason scores. Multiple studies in all these areas have shown many promising results approximating accuracies of radiologists. Despite this flourishing research, more prospective multicenter studies are needed to uncover the full impact and utility of AI on improving radiologist performance and clinical management of prostate cancer. In this narrative review, we aim to introduce emerging medical imaging AI paper quality metrics such as the Checklist for Artificial Intelligence in Medical Imaging (CLAIM) and Field-Weighted Citation Impact (FWCI), dive into some of the top AI models for segmentation, detection, and classification.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Tasks for artificial intelligence in prostate MRI
    Mason J. Belue
    Baris Turkbey
    European Radiology Experimental, 6
  • [2] Artificial intelligence development for detecting prostate cancer in MRI
    Chalida Aphinives
    Potchavit Aphinives
    Egyptian Journal of Radiology and Nuclear Medicine, 52
  • [3] Artificial intelligence development for detecting prostate cancer in MRI
    Aphinives, Chalida
    Aphinives, Potchavit
    EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE, 2021, 52 (01):
  • [4] URO - Artificial intelligence for assessing prostate lesions on MRI
    Graewert, Stephanie
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2024, 196 (02): : 128 - 128
  • [5] Artificial intelligence and radiomics in MRI-based prostate diagnostics
    Hamm, Charlie Alexander
    Beetz, Nick Lasse
    Savic, Lynn Jeanette
    Penzkofer, Tobias
    RADIOLOGE, 2020, 60 (01): : 48 - 55
  • [7] Patient perspectives on the use of artificial intelligence in prostate cancer diagnosis on MRI
    Fransen, Stefan J.
    Kwee, T. C.
    Rouw, D.
    Roest, C.
    van Lohuizen, Q. Y.
    Simonis, F. F. J.
    van Leeuwen, P. J.
    Heijmink, S.
    Ongena, Y. P.
    Haan, M.
    Yakar, D.
    EUROPEAN RADIOLOGY, 2025, 35 (02) : 769 - 775
  • [8] Applications of Artificial Intelligence to Prostate Multiparametric MRI (mpMRI): Current and Emerging Trends
    Bardis, Michelle D.
    Houshyar, Roozbeh
    Chang, Peter D.
    Ushinsky, Alexander
    Glavis-Bloom, Justin
    Chahine, Chantal
    Bui, Thanh-Lan
    Rupasinghe, Mark
    Filippi, Christopher G.
    Chow, Daniel S.
    CANCERS, 2020, 12 (05)
  • [9] Artificial Intelligence Algorithm-Based MRI for Differentiation Diagnosis of Prostate Cancer
    Luo, Rui
    Zeng, Qingxiang
    Chen, Huashan
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [10] The role of artificial intelligence in MRI-driven active surveillance in prostate cancer
    Nikita Sushentsev
    Tristan Barrett
    Nature Reviews Urology, 2022, 19 : 510 - 510