Manoeuvring of an aquatic soft robot using thrust-vectoring

被引:0
|
作者
Wang, Tao [1 ]
Lidtke, Artur K. [1 ,2 ]
Giorgio-Serchi, Francesco [3 ]
Weymouth, Gabriel D. [1 ]
机构
[1] Univ Southampton, Fluid Struct Interact Grp, Southampton SO16 7QF, Hants, England
[2] Maritime Res Inst Netherlands MARIN, Haagsteeg 2, NL-6708 PM Wageningen, Netherlands
[3] Univ Edinburgh, Sch Engn, Scottish Microelect Ctr, Edinburgh EH9 3FF, Midlothian, Scotland
来源
2019 2ND IEEE INTERNATIONAL CONFERENCE ON SOFT ROBOTICS (ROBOSOFT 2019) | 2019年
关键词
ESCAPE; IMPULSE; ENERGY;
D O I
10.1109/robosoft.2019.8722732
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Capability of a pulsed-jetting, aquatic soft robot to perform turning manoeuvres by means of a steerable nozzle is investigated experimentally for the first time. Actuation of this robot is based on the periodic conversion of slowly-charged elastic potential energy into fluid kinetic energy, giving rise to a cyclic pulsed-jet resembling the one observed in cephalopods. A steerable nozzle enables the fluid jet to be deflected away from the vehicle axis, thus providing the robot with the unique ability to manoeuvre using thrust-vectoring. This actuation scheme is shown to offer a high degree of control authority when starting from rest, yielding turning radii of the order of half of the body length of the vehicle. The most significant factor affecting efficiency of the turn has been identified to be the fluid momentum losses in the deflected nozzle. This leads, given the current nozzle design, to a distinct optimum nozzle angle of 35 degrees.
引用
收藏
页码:186 / 191
页数:6
相关论文
共 50 条
  • [1] Thrust-vectoring nozzle performance modeling
    Wilson, EA
    Adler, D
    Bar-Yoseph, P
    JOURNAL OF PROPULSION AND POWER, 2003, 19 (01) : 39 - 47
  • [2] Hover control of a thrust-vectoring aircraft
    KUANG MinChi
    ZHU JiHong
    ScienceChina(InformationSciences), 2015, 58 (07) : 200 - 204
  • [3] Hover control of a thrust-vectoring aircraft
    Kuang MinChi
    Zhu JiHong
    SCIENCE CHINA-INFORMATION SCIENCES, 2015, 58 (07) : 1 - 5
  • [4] Numerical Simulation of Fluidic Thrust-Vectoring
    M. Ferlauto
    R. Marsilio
    Aerotecnica Missili & Spazio, 2016, 95 (3): : 153 - 162
  • [5] Performance optimization of a thrust-vectoring nozzle
    Adavbiele, A. S.
    Salami, L. A.
    ADVANCES IN MATERIALS AND SYSTEMS TECHNOLOGIES, 2007, 18-19 : 407 - +
  • [6] Transformation Model of Thrust-vectoring Using RBF Neural Network
    Yong Kenan
    Ye Hui
    Chen Mou
    Wu Qingxian
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 4997 - 5002
  • [7] Thrust-vectoring nozzle work underway at ITP
    不详
    AVIATION WEEK & SPACE TECHNOLOGY, 1997, 146 (26): : 27 - 27
  • [8] Thrust-vectoring a single impinging jet in a crossflow
    Wilson, EA
    Adler, D
    Bar-Yoseph, P
    INTERNATIONAL JOURNAL OF TURBO & JET-ENGINES, 2000, 17 (03) : 219 - 226
  • [9] Thrust-vectoring a single impinging jet in a crossflow
    Wilson, E
    Adler, D
    Bar-Yoseph, P
    FOURTH INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL AND COMPUTATIONAL AEROTHERMODYNAMICS OF INTERNAL FLOWS, VOL II, PROCEEDINGS, 1999, : 261 - 268
  • [10] Aerodynamics performance prediction of thrust-vectoring nozzles
    SENER, Madrid, Spain
    J Propul Power, 2 (241-246):