Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs

被引:23
|
作者
Giannopoulou, Archontia C. [1 ]
Mertzios, George B. [2 ]
Niedermeier, Rolf [1 ]
机构
[1] TU Berlin, Inst Softwaretech & Theoret Informat, Berlin, Germany
[2] Univ Durham, Sch Engn & Comp Sci, Durham, England
基金
英国工程与自然科学研究理事会;
关键词
Polynomial-time algorithm; Longest path problem; Interval graphs; Proper interval vertex deletion set; Data reduction; Fixed-parameter algorithm; FINDING HAMILTONIAN CIRCUITS; LINEAR-TIME; DIMENSION; FLOWS;
D O I
10.1016/j.tcs.2017.05.017
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the design of fixed-parameter algorithms for problems already known to be solvable in polynomial time. The main motivation is to get more efficient algorithms for problems with unattractive polynomial running times. Here, we focus on a fundamental graph problem: LONGEST PATH, that is, given an undirected graph, find a maximum-length path in G. LONGEST PATH is NP-hard in general but known to be solvable in O (n(4)) time on n-vertex interval graphs. We show how to solve LONGEST PATH ON INTERVAL GRAPHS, parameterized by vertex deletion number k to proper interval graphs, in 0 (k(9)n) time. Notably, LONGEST PATH is trivially solvable in linear time on proper interval graphs, and the parameter value k can be approximated up to a factor of 4 in linear time. From a more general perspective, we believe that using parameterized complexity analysis may enable a refined understanding of efficiency aspects for polynomial-time solvable problems similarly to what classical parameterized complexity analysis does for NP-hard problems. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:67 / 95
页数:29
相关论文
共 50 条
  • [1] The Longest Path Problem Is Polynomial on Interval Graphs
    Ioannidou, Kyriaki
    Mertzios, George B.
    Nikolopoulos, Stavros D.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2009, 2009, 5734 : 403 - +
  • [2] Fixed-Parameter Algorithms for Computing RAC Drawings of Graphs
    Brand, Cornelius
    Ganian, Robert
    Roeder, Sebastian
    Schager, Florian
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT II, 2023, 14466 : 66 - 81
  • [3] The Longest Path Problem has a Polynomial Solution on Interval Graphs
    Ioannidou, Kyriaki
    Mertzios, George B.
    Nikolopoulos, Stavros D.
    ALGORITHMICA, 2011, 61 (02) : 320 - 341
  • [4] The Longest Path Problem has a Polynomial Solution on Interval Graphs
    Kyriaki Ioannidou
    George B. Mertzios
    Stavros D. Nikolopoulos
    Algorithmica, 2011, 61 : 320 - 341
  • [5] Fixed-Parameter Algorithms for (k, r)-Center in Planar Graphs and Map Graphs
    Demaine, Erik D.
    Fomin, Fedor V.
    Hajiaghayi, Mohammadtaghi
    Thilikos, Dimitrios M.
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (01) : 33 - 47
  • [6] Fixed-parameter algorithms for the (k, r)-center in planar graphs and map graphs
    Demaine, ED
    Fomin, FV
    Hajiaghayi, MT
    Thilikos, DM
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2003, 2719 : 829 - 844
  • [7] Invitation to fixed-parameter algorithms
    Thilikos, Dimitrios M.
    COMPUTER SCIENCE REVIEW, 2007, 1 (02) : 103 - 104
  • [8] Fixed-parameter algorithms in phylogenetics
    Gramm, Jens
    Nickelsen, Arfst
    Tantau, Till
    COMPUTER JOURNAL, 2008, 51 (01): : 79 - 101
  • [9] Interval Deletion Is Fixed-Parameter Tractable
    Cao, Yixin
    Marx, Daniel
    ACM TRANSACTIONS ON ALGORITHMS, 2015, 11 (03)
  • [10] Fixed-parameter algorithms for the cocoloring problem
    Campos, Victor
    Klein, Sulamita
    Sampaio, Rudini
    Silva, Ana
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 52 - 60