Homological unimodularity and Calabi-Yau condition for Poisson algebras

被引:9
|
作者
Lu, Jiafeng [1 ]
Wang, Xingting [2 ]
Zhuang, Guangbin [3 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[2] Temple Univ, Dept Math, Philadelphia, PA 19122 USA
[3] Univ Southern Calif, Dept Math, Los Angeles, CA 90089 USA
基金
中国国家自然科学基金;
关键词
Poisson algebra; Calabi-Yau algebra; Hochschild (co) homology; Poisson (co) homology; Dualizing complex; UNIVERSAL ENVELOPING-ALGEBRAS; DUALIZING COMPLEXES; POINCARE-DUALITY; HOPF-ALGEBRAS; COHOMOLOGY; MANIFOLD; RINGS;
D O I
10.1007/s11005-017-0967-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we show that the twisted Poincare duality between Poisson homology and cohomology can be derived from the Serre invertible bimodule. This gives another definition of a unimodular Poisson algebra in terms of its Poisson Picard group. We also achieve twisted Poincare duality for Hochschild (co) homology of Poisson bimodules using rigid dualizing complex. For a smooth Poisson affine variety with the trivial canonical bundle, we prove that its enveloping algebra is a Calabi-Yau algebra if the Poisson structure is unimodular.
引用
收藏
页码:1715 / 1740
页数:26
相关论文
共 50 条
  • [1] Homological unimodularity and Calabi–Yau condition for Poisson algebras
    Jiafeng Lü
    Xingting Wang
    Guangbin Zhuang
    Letters in Mathematical Physics, 2017, 107 : 1715 - 1740
  • [2] Skew Calabi-Yau algebras and homological identities
    Reyes, Manuel
    Rogalski, Daniel
    Zhang, James J.
    ADVANCES IN MATHEMATICS, 2014, 264 : 308 - 354
  • [3] Calabi-Yau Algebras Viewed as Deformations of Poisson Algebras
    Berger, Roland
    Pichereau, Anne
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (03) : 735 - 773
  • [4] Calabi-Yau algebras and superpotentials
    Van den Bergh, Michel
    SELECTA MATHEMATICA-NEW SERIES, 2015, 21 (02): : 555 - 603
  • [5] Calabi-Yau algebras and their deformations
    He, Ji-Wei
    Van Oystaeyen, Fred
    Zhang, Yinhuo
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2013, 56 (03): : 335 - 347
  • [6] Calabi-Yau Frobenius algebras
    Eu, Ching-Hwa
    Schedler, Travis
    JOURNAL OF ALGEBRA, 2009, 321 (03) : 774 - 815
  • [7] Calabi-Yau algebras and superpotentials
    Michel Van den Bergh
    Selecta Mathematica, 2015, 21 : 555 - 603
  • [8] Noncommutative Poisson structures, derived representation schemes and Calabi-Yau algebras
    Berest, Yuri
    Chen, Xiaojun
    Eshmatov, Farkhod
    Ramadoss, Ajay
    MATHEMATICAL ASPECTS OF QUANTIZATION, 2012, 583 : 219 - +
  • [9] Skew group algebras of Calabi-Yau algebras
    Wu, Q-S.
    Zhu, C.
    JOURNAL OF ALGEBRA, 2011, 340 (01) : 53 - 76
  • [10] Hopf Action on Calabi-Yau algebras
    Liu, L. -Y.
    Wu, Q. -S.
    Zhu, C.
    NEW TRENDS IN NONCOMMUTATIVE ALGEBRA, 2012, 562 : 189 - 209