Mass center and Jost maps between Riemannian manifolds

被引:0
|
作者
Ezin, JP [1 ]
Todjihounde, LD [1 ]
机构
[1] Inst Math & Sci Phys, Porto Novo, Benin
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Given a real number epsilon > 0, Small enough, an associated Jost map J(epsilon) between two Riemannian manifolds is defined. Then it is proved that connected Riemannian manifolds for which the identity map is J(epsilon) map are ballwise-homogenous. In the analytic case we have characterized such manifolds in terms of the Euclidean Laplacian.
引用
收藏
页码:118 / 137
页数:20
相关论文
共 50 条
  • [1] Computing Riemannian Center of Mass on Hadamard Manifolds
    Glaydston de Carvalho Bento
    Sandro Dimy Barbosa Bitar
    João Xavier da Cruz Neto
    Paulo Roberto Oliveira
    João Carlos de Oliveira Souza
    Journal of Optimization Theory and Applications, 2019, 183 : 977 - 992
  • [2] Computing harmonic maps between Riemannian manifolds
    Gaster, Jonah
    Loustau, Brice
    Monsaingeon, Leonard
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, : 531 - 580
  • [3] Computing Riemannian Center of Mass on Hadamard Manifolds
    de Carvalho Bento, Glaydston
    Bitar, Sandro Dimy Barbosa
    da Cruz Neto, Joao Xavier
    Oliveira, Paulo Roberto
    de Oliveira Souza, Joao Carlos
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (03) : 977 - 992
  • [4] Conformal Riemannian Maps between Riemannian Manifolds, Their Harmonicity and Decomposition Theorems
    Bayram Ṣahin
    Acta Applicandae Mathematicae, 2010, 109 : 829 - 847
  • [5] Conformal Riemannian Maps between Riemannian Manifolds, Their Harmonicity and Decomposition Theorems
    Sahin, Bayram
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) : 829 - 847
  • [6] f-BIMINIMAL MAPS BETWEEN RIEMANNIAN MANIFOLDS
    Zhao, Yan
    Liu, Ximin
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2019, 69 (04) : 893 - 905
  • [7] Transversally harmonic maps between manifolds with Riemannian foliations
    Konderak, JJ
    Wolak, RA
    QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 : 335 - 354
  • [8] A Bayesian Approach to the Estimation of Maps between Riemannian Manifolds
    Butler, L. T.
    Levit, B.
    MATHEMATICAL METHODS OF STATISTICS, 2007, 16 (04) : 281 - 297
  • [9] TRANSVERSALLY BIHARMONIC MAPS BETWEEN FOLIATED RIEMANNIAN MANIFOLDS
    Chiang, Yuan-Jen
    Wolak, Robert A.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (08) : 981 - 996
  • [10] f-Biminimal Maps between Riemannian Manifolds
    Yan Zhao
    Ximin Liu
    Czechoslovak Mathematical Journal, 2019, 69 : 893 - 905