Modified (0,2)-interpolation ion the roots of Jacobi polynomials.: II (convergence)

被引:0
|
作者
Lénárd, M [1 ]
机构
[1] Kuwait Univ, Dept Math & Comp Sci, Safat 13060, Kuwait
关键词
Nodal Point; Interpolation Problem; Jacobi Polynomial; Jacobi Matrice; Interpolation Procedure;
D O I
10.1023/A:1026746013519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [4] A. M. Chak, A. Sharma and J. Szabados characterized the Jacobi matrices P(alpha, beta), (alpha,beta > -1) for which the (0, 2)-interpolation problem is regular. It follows from their result, that if n is odd and alpha = beta, or if alpha,beta are both odd integers and n > 1+ (alpha +beta)/2, then the (0, 2)-interpolation problem is not regular. Recently, the author proved that for alpha,beta both odd integers, the (0, 2)-interpolation problem augmented with boundary (Hermite-type) conditions at the endpoints of the interval [-1, 1] is regular. In this paper the convergence of this modified (0, 2)-interpolation procedure is studied, if the inner nodal points are the roots of the ultraspherical polynomials with odd integer parameter.
引用
收藏
页码:161 / 177
页数:17
相关论文
共 50 条