共 50 条
First-Order Interpolation of Non-classical Logics Derived from Propositional Interpolation
被引:2
|作者:
Baaz, Matthias
[1
]
Lolic, Anela
[1
]
机构:
[1] Tech Univ Wien, Inst Diskrete Math & Geometrie 104, Vienna, Austria
来源:
基金:
奥地利科学基金会;
关键词:
Proof theory;
Interpolation;
Lattice-based many-valued logics;
Godel logics;
INTUITIONISTIC LOGIC;
GODEL LOGICS;
D O I:
10.1007/978-3-319-66167-4_15
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper develops a general methodology to connect propositional and first-order interpolation. In fact, the existence of suitable skolemizations and of Herbrand expansions together with a propositional interpolant suffice to construct a first-order interpolant. This methodology is realized for lattice-based finitely-valued logics, the top element representing true and for (fragments of) infinitely-valued firstorder Godel logic, the logic of all linearly ordered constant domain Kripke frames.
引用
收藏
页码:265 / 280
页数:16
相关论文