Elasticity solution for a cantilever beam with exponentially varying properties

被引:7
|
作者
Benguediab, S. [1 ]
Tounsi, A. [1 ,2 ]
Abdelaziz, H. H. [1 ,3 ]
Meziane, M. A. A. [3 ]
机构
[1] Univ Djillali Liabes Sidi Bel Abbes, Fac Technol, Civil Engn Dept, Mat & Hydrol Lab, Sidi Bel Abbes, Algeria
[2] Algerian Natl Themat Agcy Res Sci & Technol ATRST, El Harrach, Alger, Algeria
[3] Univ Ibn Khaldoun, Tiaret 14000, Algeria
关键词
plane stress problem; stress function; exponential functionally graded material; analytical solution; FREE-VIBRATION ANALYSIS; HIGHER-ORDER SHEAR; FUNCTIONALLY GRADED PLATES; NEUTRAL SURFACE POSITION; DEFORMATION-THEORY; PIEZOELECTRIC CANTILEVER; WAVE-PROPAGATION; BENDING ANALYSIS; REFINED THEORY; FGM PLATES;
D O I
10.1134/S0021894417020213
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
An analytical solution of a plane stress problem for a cantilever beam made of a functionally graded material subjected to uniform loading is constructed. The material is assumed to be isotropic with constant Poisson's ratio and exponentially varying Young's modulus through the beam thickness. Expressions for displacements, strains, and stresses are obtained.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 50 条
  • [1] Elasticity solution for a cantilever beam with exponentially varying properties
    S. Benguediab
    A. Tounsi
    H. H. Abdelaziz
    M. A. A. Meziane
    Journal of Applied Mechanics and Technical Physics, 2017, 58 : 354 - 361
  • [2] Elasticity Solution of a Cantilever Functionally Graded Beam
    Daouadji, Tahar Hassaine
    Henni, Abdelaziz Hadj
    Tounsi, Abdelouahed
    El Abbes, Adda Bedia
    APPLIED COMPOSITE MATERIALS, 2013, 20 (01) : 1 - 15
  • [3] Elasticity Solution of a Cantilever Functionally Graded Beam
    Tahar Hassaine Daouadji
    Abdelaziz Hadj Henni
    Abdelouahed Tounsi
    Adda Bedia El Abbes
    Applied Composite Materials, 2013, 20 : 1 - 15
  • [4] Exact Vibration Solution for Exponentially Tapered Cantilever With Tip Mass
    Wang, C. Y.
    Wang, C. M.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2012, 134 (04):
  • [5] Vibration control of a cantilever beam of varying orientation
    Yaman, Mustafa
    Sen, Sadri
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (3-4) : 1210 - 1220
  • [6] On the solution singularity in the plane elasticity problem for a cantilever strip
    V. V. Vasil’ev
    S. A. Lurie
    Mechanics of Solids, 2013, 48 : 388 - 396
  • [7] On the solution singularity in the plane elasticity problem for a cantilever strip
    Vasil'ev, V. V.
    Lurie, S. A.
    MECHANICS OF SOLIDS, 2013, 48 (04) : 388 - 396
  • [8] Vibrations of a cantilever tapered beam with varying section properties and carrying a mass at the free end
    Auciello, NM
    Nole, G
    JOURNAL OF SOUND AND VIBRATION, 1998, 214 (01) : 105 - 119
  • [9] Solution and Positive Solution to Nonlinear Cantilever Beam Equations
    姚庆六
    李永祥
    Journal of Southwest Jiaotong University(English Edition), 2008, (01) : 51 - 54
  • [10] EXACT ELASTICITY SOLUTIONS FOR THICK-WALLED FG SPHERICAL PRESSURE VESSELS WITH LINEARLY AND EXPONENTIALLY VARYING PROPERTIES
    Saidi, A. R.
    Atashipour, S. R.
    Jomehzadeh, E.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2009, 22 (04): : 405 - 416