Blind separation of surface EMG signals

被引:0
|
作者
Vuskovic, MI [1 ]
Li, X [1 ]
机构
[1] San Diego State Univ, Robot & Intelligent Syst Lab, San Diego, CA 92182 USA
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Multiple site measurements with surface EMG elctrodes can produce a significant amount of cross-talk, which depends on electrode placement. The "blind separation" techniques can be used to reduce that cross-talk. However the conventional techniques are not very effective if the media causes latencies in signal propagation, which is the case of myoelectric potentials. The algorithm proposed here takes into account the latencies of the media and uses FIR decorrelators which significantly reduce the unwanted cross-talk.
引用
收藏
页码:1478 / 1480
页数:3
相关论文
共 50 条
  • [1] The decomposition of surface EMG signals based on blind source separation of convolved mixtures
    Li, Qiang
    Yang, Ji-hai
    Chen, Xiang
    Liang, Zheng
    Ren, Yan-xuan
    2005 27TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2005, : 5912 - 5915
  • [2] Convolutive Blind Source Separation on Surface EMG Signals for Respiratory Diagnostics and Medical Ventilation Control
    Buchner, Herbert
    Petersen, Eike
    Eger, Marcus
    Rostalski, Philipp
    2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 3626 - 3629
  • [3] Addressing Source Separation and Identification issues in surface EMG using Blind Source Separation
    Naik, Ganesh R.
    Kumar, Dinesh K.
    Palaniswami, Marimuthu
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 1124 - +
  • [4] Convolutive blind source separation of surface EMG measurements of the respiratory muscles
    Petersen, Eike
    Buchner, Herbert
    Eger, Marcus
    Rostalski, Philipp
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2017, 62 (02): : 171 - 181
  • [5] SPARSITY-BASED ALGORITHMS FOR BLIND SEPARATION OF CONVOLUTIVE MIXTURES WITH APPLICATION TO EMG SIGNALS
    Boudjellal, A.
    Abed-Meraim, K.
    Aissa-El-Bey, A.
    Belouchrani, A.
    Ravier, Ph.
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 189 - 192
  • [6] MU decomposition from multichannel surface EMG signals using blind deconvolution
    Maekawa, Satoshi
    Arimoto, Takahiko
    Kotani, Manabu
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2007, 90 (02): : 22 - 30
  • [7] Decomposition of surface EMG signals
    De Luca, Carlo J.
    Adam, Alexander
    Wotiz, Robert
    Gilmore, L. Donald
    Nawab, S. Hamid
    JOURNAL OF NEUROPHYSIOLOGY, 2006, 96 (03) : 1646 - 1657
  • [8] Segmentation of Surface EMG Signals
    Sedlak, Jan
    Spulak, Daniel
    Cmejla, Roman
    Bacakova, Radka
    Chrastkova, Martina
    Kracmar, Bronislav
    2013 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE), 2013, : 257 - 260
  • [9] Optimized wavelets for blind separation of nonstationary surface myoelectric signals
    Farina, Dario
    Lucas, Marie-Francoise
    Doncarli, Christian
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2008, 55 (01) : 78 - 86
  • [10] Multi-channel intramuscular and surface EMG decomposition by convolutive blind source separation
    Negro, Francesco
    Muceli, Silvia
    Castronovo, Anna Margherita
    Holobar, Ales
    Farina, Dario
    JOURNAL OF NEURAL ENGINEERING, 2016, 13 (02)