Atom Probe Tomography of Au-Cu Bimetallic Nanoparticles Synthesized by Inert Gas Condensation

被引:6
|
作者
Yang, Q. [1 ]
Danaie, M. [2 ]
Young, N. [1 ]
Broadley, V. [3 ]
Joyce, D. E. [3 ]
Martin, T. L. [4 ]
Marceau, E. [5 ]
Moody, M. P. [1 ]
Bagot, P. A. J. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Diamond Light Source, ePSIC, Didcot OX11 0DE, Oxon, England
[3] Mantis Deposit Ltd, Thame OX9 3RR, Oxon, England
[4] Univ Bristol, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[5] Univ Artois, Univ Lille, CNRS, Cent Lille,ENSCL,UMR 8181,UCCS, F-59000 Lille, France
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2019年 / 123卷 / 43期
基金
英国工程与自然科学研究理事会;
关键词
NANOCLUSTERS; TEMPERATURE;
D O I
10.1021/acs.jpcc.9b09340
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The inert gas condensation method (IGC) produces multimetallic nanoparticles in a metastable state that may exhibit heterogeneities of size, structure, and composition. The deposition of IGC-fabricated nanoparticles on substrates allows for a detailed characterization by combination of aberration-corrected scanning transmission electron microscopy (TEM) and atom probe tomography (APT). Multiple particle monitoring and high-resolution scanning TEM give access to the size distribution of Au-Cu nanoparticles (<10 nm in diameter, bimodal distribution). TEM and APT show that the alloying between Cu and Au may stabilize the I-h structure for smaller particles (<4 nm). Combining high-resolution scanning transmission electron microscopy/energy dispersive X-ray and three-dimensional composition analysis by APT reveals that an excess of Cu may be present in a shell around the larger particles (>7 nm), while Cu is more randomly distributed in smaller particles.
引用
收藏
页码:26481 / 26489
页数:9
相关论文
共 50 条
  • [1] Monitoring of Anthracene Using Nanoscale Au-Cu Bimetallic Alloy Nanoparticles Synthesized with Various Compositions
    Latif-ur-Rahman
    Shah, Afzal
    Han, Changseok
    Jan, Abdul Khaliq
    ACS OMEGA, 2020, 5 (35): : 22494 - 22501
  • [2] Characterization of InSb Nanoparticles Synthesized Using Inert Gas Condensation
    Sneha G Pandya
    Martin E Kordesch
    Nanoscale Research Letters, 2015, 10
  • [3] Characterization of InSb Nanoparticles Synthesized Using Inert Gas Condensation
    Pandya, Sneha G.
    Kordesch, Martin E.
    NANOSCALE RESEARCH LETTERS, 2015, 10 : 1 - 7
  • [4] Modification of TiO2 by bimetallic Au-Cu nanoparticles for wastewater treatment
    Hai, Zibin
    El Kolli, Nadia
    Uribe, Daniel Bahena
    Beaunier, Patricia
    Jose-Yacaman, Miguel
    Vigneron, Jackie
    Etcheberry, Arnaud
    Sorgues, Sebastien
    Colbeau-Justin, Christophe
    Chen, Jiafu
    Remita, Hynd
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (36) : 10829 - 10835
  • [5] Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation
    Silva, L. G.
    Solis-Pomar, F.
    Gutierrez-Lazos, C. D.
    Melendrez, Manuel F.
    Martinez, E.
    Fundora, A.
    Perez-Tijerina, E.
    JOURNAL OF NANOMATERIALS, 2014, 2014
  • [6] Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
    Gracia-Pinilla, M. A.
    Martinez, E.
    Silva Vidaurri, G.
    Perez-Tijerina, E.
    NANOSCALE RESEARCH LETTERS, 2010, 5 (01): : 180 - 188
  • [7] Deposition of Size-Selected Cu Nanoparticles by Inert Gas Condensation
    M Gracia-Pinilla
    E Martínez
    G Silva Vidaurri
    E Pérez-Tijerina
    Nanoscale Research Letters, 5
  • [8] Surface plasmon resonance of Au-Cu bimetallic nanoparticles predicted by a quasi-chemical model
    Yen-Hsun Su
    Wen-Lin Wang
    Nanoscale Research Letters, 8
  • [9] Radiolytic synthesis of Au-Cu bimetallic nanoparticles supported on TiO2: application in photocatalysis
    Hai, Zibin
    El Kolli, Nadia
    Chen, Jiafu
    Remita, Hynd
    NEW JOURNAL OF CHEMISTRY, 2014, 38 (11) : 5279 - 5286
  • [10] Substrate catalyzed formation of Au-Cu bimetallic nanoparticles as electrocatalyst for the reduction of dioxygen and hydrogen peroxide
    Gowthaman, N. S. K.
    Shankar, Sekar
    John, S. Abraham
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 812 : 37 - 44