Subpixel-Based Precipitation Nowcasting with the Pyramid Lucas-Kanade Optical Flow Technique

被引:23
|
作者
Li, Ling [1 ,2 ]
He, Zhengwei [1 ]
Chen, Sheng [3 ,4 ]
Mai, Xiongfa [2 ]
Zhang, Asi [3 ,4 ]
Hu, Baoqing [2 ]
Li, Zhi [2 ]
Tong, Xinhua [2 ]
机构
[1] Chengdu Univ Technol, State Key Lab Geohazard Prevent & Geoenvironm Pro, Chengdu 610059, Sichuan, Peoples R China
[2] Guangxi Teachers Educ Univ, Minist Educ, Data Sci Guangxi Higher Educ Key Lab, Key Lab Environm Change & Resources Use Beibu Gul, Nanning 530001, Peoples R China
[3] Sun Yat Sen Univ, Sch Atmospher Sci, Guangzhou 510275, Guangdong, Peoples R China
[4] Guangdong Prov Key Lab Climate Change & Nat Disas, Guangzhou 510275, Guangdong, Peoples R China
来源
ATMOSPHERE | 2018年 / 9卷 / 07期
基金
中国国家自然科学基金;
关键词
nowcasting; subpixel; pyramid Lucas-Kanade optical flow algorithm; SINGLE DOPPLER RADAR; VERIFICATION; METHODOLOGY; ALGORITHM; TRACKING;
D O I
10.3390/atmos9070260
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Short-term high-resolution quantitative precipitation forecasting (QPF) is very important for flash-flood warning, navigation safety, and other hydrological applications. This paper proposes a subpixel-based QPF algorithm using a pyramid Lucas-Kanade optical flow technique (SPLK) for short-time rainfall forecast. The SPLK tracks the storm on the subpixel level by using the optical flow technique and then extrapolates the precipitation using a linear method through redistribution and interpolation. The SPLK compares with object-based and pixel-based nowcasting algorithms using eight thunderstorm events to assess its performance. The results suggest that the SPLK can perform better nowcasting of precipitation than the object-based and pixel-based algorithms with higher adequacy in tracking and predicting severe storms in 0-2 h lead-time forecasting.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Moving Target Detection and Tracking Based on Pyramid Lucas-Kanade Optical Flow
    Wang, Zhen
    Yang, Xiaojun
    2018 IEEE 3RD INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC), 2018, : 66 - 69
  • [2] Evaluation of Lucas-Kanade based optical flow algorithm
    Liu Xiaochen
    Liu Xiaojie
    Xiong Yufeng
    Yang Jiangtao
    Wang Yubo
    Wang Linwei
    Liu Jun
    Shen Chong
    Tang Jun
    2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [3] A new methodology for pixel-quantitative precipitation nowcasting using a pyramid Lucas Kanade optical flow approach
    Liu, Yu
    Xi, Du-Gang
    Li, Zhao-Liang
    Hong, Yang
    JOURNAL OF HYDROLOGY, 2015, 529 : 354 - 364
  • [4] Lucas-Kanade Optical Flow Based Camera Motion Estimation Approach
    Meng, Zelin
    Kong, Xiangbo
    Meng, Lin
    Tomiyama, Hiroyuki
    2019 INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC), 2019, : 77 - 78
  • [5] Anisotropic Multi-Scale Lucas-Kanade Pyramid
    Yuan, Jirui
    Egiazarian, Karen
    MULTIMEDIA ON MOBILE DEVICES 2011 AND MULTIMEDIA CONTENT ACCESS: ALGORITHMS AND SYSTEMS V, 2011, 7881
  • [6] Optimal Filter Estimation for Lucas-Kanade Optical Flow
    Sharmin, Nusrat
    Brad, Remus
    SENSORS, 2012, 12 (09) : 12694 - 12709
  • [7] A. head-tracker based on the Lucas-Kanade optical flow algorithm
    Loewenich, Frank
    Maire, Frederic
    ADVANCES IN INTELLIGENT IT: ACTIVE MEDIA TECHNOLOGY 2006, 2006, 138 : 25 - +
  • [8] An Improved Visual Odometer Based on Lucas-Kanade Optical Flow and ORB Feature
    Zhong, Lingjun
    Meng, Limin
    Hou, Wei
    Huang, Li
    IEEE ACCESS, 2023, 11 : 47179 - 47186
  • [9] Large Displacement Detection Using Improved Lucas-Kanade Optical Flow
    Al-Qudah, Saleh
    Yang, Mijia
    SENSORS, 2023, 23 (06)
  • [10] A Motion-Based Tracking System Using the Lucas-Kanade Optical Flow Method
    Leonida, Karl Leyven
    Sevilla, Karla Veronica
    Mantises, Cyrel O.
    2022 14TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2022), 2022, : 86 - 90