On the K-theory of subgroups of virtually connected Lie groups

被引:2
|
作者
Kasprowski, Daniel [1 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2015年 / 15卷 / 06期
关键词
FARRELL-JONES CONJECTURE; ISOMORPHISM CONJECTURE; NOVIKOV-CONJECTURE; HYPERBOLIC GROUPS; ARITHMETIC GROUPS; CAT(0)-GROUPS; DIMENSION;
D O I
10.2140/agt.2015.15.3467
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every finitely generated subgroup G of a virtually connected Lie group which admits a finite-dimensional model for (E) under barG, the assembly map in algebraic K-theory is split injective. We also prove a similar statement for algebraic L-theory which, in particular, implies the generalized integral Novikov conjecture for such groups.
引用
收藏
页码:3467 / 3483
页数:17
相关论文
共 50 条