Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI

被引:78
|
作者
Zhang, L. [1 ]
Jacob, D. J. [1 ,2 ]
Liu, X. [3 ,4 ,5 ]
Logan, J. A. [2 ]
Chance, K. [4 ]
Eldering, A. [6 ]
Bojkov, B. R. [7 ]
机构
[1] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[2] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Univ Maryland Baltimore Cty, Goddard Earth Sci & Technol Ctr, Baltimore, MD 21228 USA
[4] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[5] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[6] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[7] European Space Agcy ESA ESRIN, Sci Applicat & Future Technol Dept, I-00044 Frascati, RM, Italy
关键词
UNITED-STATES; EMISSION SPECTROMETER; STRATOSPHERIC OZONE; HIGH-RESOLUTION; AIR-QUALITY; 3-D MODELS; A-PRIORI; CHEMISTRY; TRANSPORT; POLLUTION;
D O I
10.5194/acp-10-4725-2010
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We analyze the theoretical basis of three different methods to validate and intercompare satellite measurements of atmospheric composition, and apply them to tropospheric ozone retrievals from the Tropospheric Emission Spectrometer (TES) and the Ozone Monitoring Instrument (OMI). The first method (in situ method) uses in situ vertical profiles for absolute instrument validation; it is limited by the sparseness of in situ data. The second method (CTM method) uses a chemical transport model (CTM) as an intercomparison platform; it provides a globally complete intercomparison with relatively small noise from model error. The third method (averaging kernel smoothing method) involves smoothing the retrieved profile from one instrument with the averaging kernel matrix of the other; it also provides a global intercomparison but dampens the actual difference between instruments and adds noise from the a priori. We apply the three methods to a full year (2006) of TES and OMI data. Comparison with in situ data from ozonesondes shows mean positive biases of 5.3 parts per billion volume (ppbv) (10%) for TES and 2.8 ppbv (5%) for OMI at 500 hPa. We show that the CTM method (using the GEOS-Chem CTM) closely approximates results from the in situ method while providing global coverage. It reveals that differences between TES and OMI are generally less than 10 ppbv (18%), except at northern mid-latitudes in summer and over tropical continents. The CTM method further allows for CTM evaluation using both satellite observations. We thus find that GEOS-Chem underestimates tropospheric ozone in the tropics due to possible underestimates of biomass burning, soil, and lightning emissions. It overestimates ozone in the northern subtropics and southern mid-latitudes, likely because of excessive stratospheric influx of ozone.
引用
收藏
页码:4725 / 4739
页数:15
相关论文
共 50 条
  • [1] Improved tropospheric ozone profile retrievals using OMI and TES radiances
    Worden, John
    Liu, Xiong
    Bowman, Kevin
    Chance, Kelly
    Beer, Reinhard
    Eldering, Annmarie
    Gunson, Michael
    Worden, Helen
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (01)
  • [2] Satellite measurements of atmospheric ozone profiles, including tropospheric ozone, from ultraviolet/visible measurements in the nadir geometry: A potential method to retrieve tropospheric ozone
    Chance, KV
    Burrows, JP
    Perner, D
    Schneider, W
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1997, 57 (04): : 467 - 476
  • [3] Simulated observation of tropospheric ozone and CO with the Tropospheric Emission Spectrometer (TES) satellite instrument
    Luo, M
    Beer, R
    Jacob, DJ
    Logan, JA
    Rodgers, CD
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2002, 107 (D15):
  • [4] Tropospheric column ozone: matching individual profiles from Aura OMI and TES with a chemistry-transport model
    Tang, Q.
    Prather, M. J.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (21) : 10441 - 10452
  • [5] Optimal extraction of Tropospheric Ozone Column by simultaneous use of OMI and TES data and the surface temperature
    Mobasheri, Mohammad Reza
    Shirazi, Hamid
    INTERNATIONAL CONFERENCE ON SENSORS & MODELS IN REMOTE SENSING & PHOTOGRAMMETRY, 2015, 41 (W5): : 467 - 474
  • [6] A global climatology of tropospheric and stratospheric ozone derived from Aura OMI and MLS measurements
    Ziemke, J. R.
    Chandra, S.
    Labow, G. J.
    Bhartia, P. K.
    Froidevaux, L.
    Witte, J. C.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (17) : 9237 - 9251
  • [7] DISTRIBUTION OF TROPOSPHERIC OZONE IN THE TROPICS FROM SATELLITE AND OZONESONDE MEASUREMENTS
    FISHMAN, J
    BRACKETT, VG
    FAKHRUZZAMAN, K
    JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1992, 54 (05): : 589 - 597
  • [8] Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations
    Bowman, K. W.
    Shindell, D. T.
    Worden, H. M.
    Lamarque, J. F.
    Young, P. J.
    Stevenson, D. S.
    Qu, Z.
    de la Torre, M.
    Bergmann, D.
    Cameron-Smith, P. J.
    Collins, W. J.
    Doherty, R.
    Dalsoren, S. B.
    Faluvegi, G.
    Folberth, G.
    Horowitz, L. W.
    Josse, B. M.
    Lee, Y. H.
    MacKenzie, I. A.
    Myhre, G.
    Nagashima, T.
    Naik, V.
    Plummer, D. A.
    Rumbold, S. T.
    Skeie, R. B.
    Strode, S. A.
    Sudo, K.
    Szopa, S.
    Voulgarakis, A.
    Zeng, G.
    Kulawik, S. S.
    Aghedo, A. M.
    Worden, J. R.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (08) : 4057 - 4072
  • [9] Validation of Tropospheric Emission Spectrometer (TES) measurements of the total, stratospheric, and tropospheric column abundance of ozone
    Osterman, G. B.
    Kulawik, S. S.
    Worden, H. M.
    Richards, N. A. D.
    Fisher, B. M.
    Eldering, A.
    Shephard, M. W.
    Froidevaux, L.
    Labow, G.
    Luo, M.
    Herman, R. L.
    Bowman, K. W.
    Thompson, A. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D15)
  • [10] Interannual variability of stratospheric and tropospheric ozone determined from satellite measurements
    Fishman, J
    Creilson, JK
    Wozniak, AE
    Crutzen, PJ
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D20) : 1 - 11