Vertical vs. adiabatic ionization energies in solution and gas-phase: probing ionization-induced reorganization in conformationally-mobile bichromophoric actuators using photoelectron spectroscopy, electrochemistry and theory

被引:12
|
作者
Ivanov, Maxim V. [1 ]
Wang, Denan [1 ]
Zhang, Depeng [1 ]
Rathore, Rajendra [1 ]
Reid, Scott A. [1 ]
机构
[1] Marquette Univ, Dept Chem, Milwaukee, WI 53233 USA
关键词
SELF-INTERACTION ERROR; CHARGE DELOCALIZATION; COUNTERPOISE CORRECTIONS; ELECTRON-TRANSFER; THROUGH-SPACE; STATES; TRANSFORMATION; POTENTIALS; COMPONENTS; CATION;
D O I
10.1039/c8cp02936a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ionization-induced structural and conformational reorganization in various -stacked dimers and covalently linked bichromophores is relevant to many processes in biological systems and functional materials. In this work, we examine the role of structural, conformational, and solvent reorganization in a set of conformationally mobile bichromophoric donors, using a combination of gas-phase photoelectron spectroscopy, solution-phase electrochemistry, and density functional theory (DFT) calculations. Photoelectron spectral analysis yields both adiabatic and vertical ionization energies (AIE/VIE), which are compared with measured (adiabatic) solution-phase oxidation potentials (E-ox). Importantly, we find a strong correlation of E-ox with AIE, but not VIE, reflecting variations in the attendant structural/conformational reorganization upon ionization. A careful comparison of the experimental data with the DFT calculations allowed us to probe the extent of charge stabilization in the gas phase and solution and to parse the reorganizational energy into its various components. This study highlights the importance of a synergistic approach of experiment and theory to study ionization-induced structural and conformational reorganization.
引用
收藏
页码:25615 / 25622
页数:8
相关论文
empty
未找到相关数据