Pay Attention to the Activations: A Modular Attention Mechanism for Fine-Grained Image Recognition

被引:64
|
作者
Rodriguez, Pau [1 ]
Velazquez, Diego [2 ]
Cucurull, Guillem [1 ]
Gonfaus, Josep M. [3 ]
Roca, E. Xavier [2 ]
Gonzalez, Jordi [2 ]
机构
[1] Element AI, Montreal, PQ H2S 3G9, Canada
[2] Univ Autonoma Barcelona, Comp Vis Ctr, Bellaterra 08193, Spain
[3] Univ Autonoma Barcelona, Visual Tagging Serv, Parc Recerca, Bellaterra 08193, Spain
关键词
Computer architecture; Computational modeling; Image recognition; Task analysis; Proposals; Logic gates; Clutter; Image Retrieval Deep Learning Convolutional Neural Networks Attention-based Learning; VISUAL-ATTENTION; MODEL; AGE;
D O I
10.1109/TMM.2019.2928494
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fine-grained image recognition is central to many multimedia tasks such as search, retrieval, and captioning. Unfortunately, these tasks are still challenging since the appearance of samples of the same class can be more different than those from different classes. This issue is mainly due to changes in deformation, pose, and the presence of clutter. In the literature, attention has been one of the most successful strategies to handle the aforementioned problems. Attention has been typically implemented in neural networks by selecting the most informative regions of the image that improve classification. In contrast, in this paper, attention is not applied at the image level but to the convolutional feature activations. In essence, with our approach, the neural model learns to attend to lower-level feature activations without requiring part annotations and uses those activations to update and rectify the output likelihood distribution. The proposed mechanism is modular, architecture-independent, and efficient in terms of both parameters and computation required. Experiments demonstrate that well-known networks such as wide residual networks and ResNeXt, when augmented with our approach, systematically improve their classification accuracy and become more robust to changes in deformation and pose and to the presence of clutter. As a result, our proposal reaches state-of-the-art classification accuracies in CIFAR-10, the Adience gender recognition task, Stanford Dogs, and UEC-Food100 while obtaining competitive performance in ImageNet, CIFAR-100, CUB200 Birds, and Stanford Cars. In addition, we analyze the different components of our model, showing that the proposed attention modules succeed in finding the most discriminative regions of the image. Finally, as a proof of concept, we demonstrate that with only local predictions, an augmented neural network can successfully classify an image before reaching any fully connected layer, thus reducing the computational amount up to 10.
引用
收藏
页码:502 / 514
页数:13
相关论文
共 50 条
  • [1] Summary of Fine-Grained Image Recognition Based on Attention Mechanism
    Yao, Ma
    Min, Zhi
    THIRTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2021), 2022, 12083
  • [2] A Streamlined Attention Mechanism for Image Classification and Fine-Grained Visual Recognition
    Dakshayani Himabindu D.
    Praveen Kumar S.
    Dakshayani Himabindu, D. (dakshayanihimabindu_d@vnrvjiet.in), 1600, Brno University of Technology (27): : 59 - 67
  • [3] Fine-grained Recognition of Chinese Food Image Based on DenseNet with Attention Mechanism
    Hao, Ran
    Gao, Weidong
    Mi, Jihang
    Zhao, Zhenwei
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [4] Fine-grained Image Recognition via Attention Interaction and Counterfactual Attention Network
    Huang, Lei
    An, Chen
    Wang, Xiaodong
    Bullock, Leon Bevan
    Wei, Zhiqiang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 125
  • [5] Attention cutting and padding learning for fine-grained image recognition
    Zhuo Cheng
    Hongjian Li
    Xiaolin Duan
    Xiangyan Zeng
    Mingxuan He
    Hao Luo
    Multimedia Tools and Applications, 2021, 80 : 32791 - 32805
  • [6] Group-Attention Transformer for Fine-Grained Image Recognition
    Yan, Bo
    Wang, Siwei
    Zhu, En
    Liu, Xinwang
    Chen, Wei
    Communications in Computer and Information Science, 2022, 1587 CCIS : 40 - 54
  • [7] Attention cutting and padding learning for fine-grained image recognition
    Cheng, Zhuo
    Li, Hongjian
    Duan, Xiaolin
    Zeng, Xiangyan
    He, Mingxuan
    Luo, Hao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (21-23) : 32791 - 32805
  • [8] Fine-grained attention for image caption generation
    Yan-Shuo Chang
    Multimedia Tools and Applications, 2018, 77 : 2959 - 2971
  • [9] Fine-grained attention for image caption generation
    Chang, Yan-Shuo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (03) : 2959 - 2971
  • [10] Fine-grained image retrieval by combining attention mechanism and context information
    Li, Xiaoqing
    Ma, Jinwen
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (02): : 1881 - 1897