Machine Learning-Based Workload Orchestrator for Vehicular Edge Computing

被引:61
|
作者
Sonmez, Cagatay [1 ]
Tunca, Can [2 ]
Ozgovde, Atay [3 ]
Ersoy, Cem [4 ]
机构
[1] Arcelik Elect Plant, Res & Dev Ctr, TR-34528 Istanbul, Turkey
[2] Pointr, TR-34382 Istanbul, Turkey
[3] Galatasaray Univ, Dept Comp Engn, TR-34349 Istanbul, Turkey
[4] Bogazici Univ, Dept Comp Engn, TR-34342 Istanbul, Turkey
关键词
Task analysis; Computer architecture; Edge computing; Computational modeling; Servers; Vehicle dynamics; Heuristic algorithms; Intelligent transportation systems; Internet of Vehicles; vehicular edge computing; task offloading; vehicular edge orchestrator; machine learning;
D O I
10.1109/TITS.2020.3024233
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The Internet of Vehicles (IoV) vision encompasses a wide range of novel intelligent highway scenarios that rely on vehicles with an ever-increasing degree of autonomy and the prospect of sophisticated services like e-Horizon and cognitive driving assistance. The self-driving vehicle, on the other hand, entails a new passenger profile where sophisticated infotainment applications are expected to enhance the quality of travel. From the technical stand point, for this vision to become a reality a streamlined edge computing infrastructure, namely Vehicular Edge Computing (VEC), is required where computationally intensive workloads are offloaded to a nearby VEC infrastructure. However, the highly dynamic environment renders it difficult to efficiently operate a VEC system to yield the crisp performance required on an autonomous vehicle. In this setting, where to offload each task stands out as a crucial decision problem, and the conventional methods prove insufficient for its solution. In our work, we proposed a two-stage machine learning-based vehicular edge orchestrator which takes into account not only the task completion success but also the service time. To demonstrate how our approach performs in a realistic setting, we employed EdgeCloudSim to design extensive experiments where the characteristics of the vehicular applications, upload/download sizes, computational footprints of the tasks, the LAN, MAN and WAN network models, and the mobility are considered. Detailed performance evaluation of the proposed system via simulation is carried out where both overall and service type-specific performance scores in comparison with opponent schemes are reported.
引用
收藏
页码:2239 / 2251
页数:13
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Edge Workload Orchestrator for Vehicular Edge Computing
    Silva, Eliana Neuza
    da Silva, Fernando Mira
    2023 IEEE 9TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION, NETSOFT, 2023, : 44 - 52
  • [2] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Zheng, Tao
    Wan, Jian
    Zhang, Jilin
    Jiang, Congfeng
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2022, 11 (01):
  • [3] Deep Reinforcement Learning-Based Workload Scheduling for Edge Computing
    Tao Zheng
    Jian Wan
    Jilin Zhang
    Congfeng Jiang
    Journal of Cloud Computing, 11
  • [4] Deep Learning-Based Task Offloading for Vehicular Edge Computing
    Zeng, Feng
    Liu, Chengsheng
    Tangjiang, Junzhe
    Li, Wenjia
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT III, 2021, 12939 : 291 - 298
  • [5] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [6] Reinforcement Learning-Based Decision-Making for Vehicular Edge Computing
    Maleki, Homa
    Basaran, Mehmet
    Durak-Ata, Lutfiye
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [7] Deep Learning-Based Task Discrimination Offloading in Vehicular Edge Computing
    Zhang J.
    Qi K.
    Zhang Q.
    Sun L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (01): : 29 - 39
  • [8] Learning-Based Load-Aware Heterogeneous Vehicular Edge Computing
    Zhu, Lei
    Zhang, Zhizhong
    Lin, Peng
    Shafiq, Omair
    Zhang, Yu
    Yu, F. Richard
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 4583 - 4588
  • [9] Adaptive Learning-Based Task Offloading for Vehicular Edge Computing Systems
    Sun, Yuxuan
    Guo, Xueying
    Song, Jinhui
    Zhou, Sheng
    Jiang, Zhiyuan
    Liu, Xin
    Niu, Zhisheng
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (04) : 3061 - 3074
  • [10] Design and Development of a Machine Learning-Based Task Orchestrator for Intelligent Systems on Edge Networks
    Peixoto, Maria J. P.
    Azim, Akramul
    IEEE ACCESS, 2023, 11 : 33049 - 33060