A multiple-model generalized labeled multi-Bernoulli filter based on blocked Gibbs sampling for tracking maneuvering targets

被引:11
|
作者
Cao, Chenghu [1 ]
Zhao, Yongbo [1 ,2 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, 2 Taibai South Rd, Xian 710071, Peoples R China
[2] Xidian Univ, Informat Sensing & Understanding, Xian 710071, Peoples R China
关键词
Multiple-model generalized labeled multi-Bernoulli; Tracking multiple maneuvering targets; Blocked Gibbs sampling; Low computational cost; MONTE-CARLO METHODS; RANDOM FINITE SETS; MULTITARGET TRACKING; MULTIOBJECT TRACKING; CONVERGENCE ANALYSIS; PHD; MULTISENSOR; ALGORITHM;
D O I
10.1016/j.sigpro.2021.108119
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, an efficient implementation of the multiple-model generalized labeled multi-Bernoulli filter (MM-GLMB) is presented for tracking multiple maneuvering targets. To alleviate the generation of the redundant components, the original two-staged implementations of MM-GLMB filter are integrated into a single step bringing the benefit that only one truncation procedure is required per iteration. In this study, the authors take the convergence behavior of the Gibbs sampling into full consideration to improve the convergence rate. The blocked Gibbs sampling over lattice Gaussian distribution based solution to the implementation of MM-GLMB filter is proposed to greatly relax the computational load. The numerical simulations demonstrate the efficacy of the proposed algorithm with low computational cost. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Multiple-Model Cardinality Balanced Multitarget Multi-Bernoulli Filter for Tracking Maneuvering Targets
    Yuan, Xianghui
    Lian, Feng
    Han, Chongzhao
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [2] A Generalized Labeled Multi-Bernoulli Filter for Maneuvering Targets
    Punchihewa, Yuthika
    Vo, Ba-Ngu
    Vo, Ba-Tuong
    2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 980 - 986
  • [3] Multiple model labeled multi-Bernoulli filter for maneuvering target tracking
    Qiu, Hao
    Huang, Gao-Ming
    Zuo, Wei
    Gao, Jun
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2015, 37 (12): : 2683 - 2688
  • [4] Multiple Group Targets Tracking Using the Generalized Labeled Multi-Bernoulli Filter
    Zhu Shujun
    Liu Weifeng
    Weng Chenglin
    Cui Hailong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4871 - 4876
  • [5] Multiple model based generalized labeled multi-Bernoulli filter
    Xin H.
    Song P.
    Cao C.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (12): : 3603 - 3613
  • [6] Interacting multiple model Poisson multi-Bernoulli mixture filter for maneuvering targets tracking
    Chen Z.
    Song L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2024, 46 (03): : 786 - 794
  • [7] An improved generalized labeled multi-Bernoulli filter for maneuvering extended target tracking
    Feng X.-X.
    Chi L.-J.
    Wang Q.
    Pu L.
    Kongzhi yu Juece/Control and Decision, 2019, 34 (10): : 2143 - 2149
  • [8] A Tracking and Classification algorithm for Maneuvering Targets with Labeled Multi-Bernoulli
    Peng H.
    Huang G.
    Tian W.
    Qiu H.
    Man X.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2019, 53 (02): : 157 - 162and178
  • [9] Multiple Model Poisson Multi-Bernoulli Mixture Filter for Maneuvering Targets
    Li, Guchong
    Kong, Lingjiang
    Yi, Wei
    Li, Xiaolong
    IEEE SENSORS JOURNAL, 2021, 21 (03) : 3143 - 3154
  • [10] Robust labeled multi-Bernoulli filter for maneuvering target tracking
    Feng X.
    Wei S.
    Wang Q.
    Lu C.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46 (02): : 56 - 60and66