Experimental study on the direct planar metallization on glass by the particle sputtering in laser-induced plasma-assisted ablation

被引:6
|
作者
Liang, Liang [1 ]
He, Lin [1 ]
Jiang, Zhikang [1 ]
Tan, Huanheng [1 ]
Jiang, Changcheng [1 ]
Li, Xiaoqiang [1 ]
机构
[1] South China Univ Technol, Natl Engn Res Ctr Near Net Shape Forming Metall M, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Metallization; Glass; Laser-induced plasma-assisted ablation; Patterned circuit; Nanosecond laser; SELECTIVE METALLIZATION; NANOSECOND; FABRICATION; NANOPARTICLES; DYNAMICS;
D O I
10.1016/j.jmapro.2022.01.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser-induced plasma-assisted ablation (LIPAA) is an efficient and low-cost method for processing the metallic pattern on glass. In this study, the metallic sacrificed target was used in the LIPAA process, the feasibility of direct planar metallization on the glass substrate was explored. For this purpose, the morphology and chemical composition of the planar metallization layer on glass substrate, which was fabricated by line-by-line LIPAA, was characterized in detail, and the corresponding metallization regime was clarified. The experimental results indicate that gap distance between the glass specimen and metallic sacrificed substrate has a significant influence on the homogeneity, thickness, compactness, and chemical composition of the metallization layer. In addition, with a small gap distance, the periodic behaviors of generation, accumulation, blockage and spray of the metallic oxide powders between the gap bring about stripes embedded in the metallization layer. Moreover, based on the prepared metallization layer by line-by-line LIPAA, the patterned circuit was fabricated on the glass by laser patterning method and its conductivity was enhanced by successive chemical reduction. The comprehensive performance test for the patterned circuit in terms of morphology, adhesion strength, conductivity demonstrate that the line-by-line LIPAA method presents a great potential for preparing the patterned circuit on glass.
引用
收藏
页码:573 / 583
页数:11
相关论文
共 50 条
  • [1] A comparative study of direct laser ablation and laser-induced plasma-assisted ablation on glass surface
    Xia, Yani
    Jing, Xiubing
    Zhang, Dawei
    Wang, Fujun
    Jaffery, Syed Husain Imran
    Li, Huaizhong
    INFRARED PHYSICS & TECHNOLOGY, 2021, 115
  • [2] Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA)
    Hanada, Y
    Sugioka, K
    Takase, H
    Takai, H
    Miyamoto, I
    Midorikawa, K
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (01): : 111 - 115
  • [3] Selective metallization of polyimide by laser-induced plasma-assisted ablation (LIPAA)
    Y. Hanada
    K. Sugioka
    H. Takase
    H. Takai
    I. Miyamoto
    K. Midorikawa
    Applied Physics A, 2005, 80 : 111 - 115
  • [4] Effect of Laser Parameters on Laser-Induced Plasma-Assisted Ablation (LIPAA) of Glass
    Sarma, Upasana
    Joshi, Shrikrishna N.
    ADVANCES IN UNCONVENTIONAL MACHINING AND COMPOSITES, AIMTDR 2018, 2020, : 67 - 76
  • [5] Transparent superhydrophobic glass prepared by laser-induced plasma-assisted ablation on the surface
    Zhao, Douyan
    Zhu, Hao
    Zhang, Zhaoyang
    Xu, Kun
    Lei, Weining
    Gao, Jian
    Liu, Yang
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (33) : 15679 - 15689
  • [6] Transparent superhydrophobic glass prepared by laser-induced plasma-assisted ablation on the surface
    Douyan Zhao
    Hao Zhu
    Zhaoyang Zhang
    Kun Xu
    Weining Lei
    Jian Gao
    Yang Liu
    Journal of Materials Science, 2022, 57 : 15679 - 15689
  • [7] Laser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphology
    Rahman, T. U.
    Rehman, Z. U.
    Ullah, S.
    Qayyum, H.
    Shafique, B.
    Ali, R.
    Liaqat, U.
    Dogar, A. H.
    Qayyum, A.
    OPTICS AND LASER TECHNOLOGY, 2019, 120
  • [8] Laser-induced plasma-assisted ablation of sapphire microstructures and their wettability
    Wang X.
    Wen Q.
    Chen J.
    Huang G.
    Cui C.
    Jiang F.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2024, 32 (03): : 366 - 380
  • [9] Micromachining of glass materials by laser-induced plasma-assisted ablation (LIPAA) using a conventional nanosecond laser
    Zhang, J
    Sugioka, K
    Midorikawa, K
    LASER APPLICATIONS IN MICROELECTRONIC AND OPTOELECTRONIC MANUFACTURING IV, 1999, 3618 : 363 - 369
  • [10] Direct fabrication of microgratings in fused quartz by laser-induced plasma-assisted ablation with a KrF excimer laser
    Zhang, J
    Sugioka, K
    Midorikawa, K
    OPTICS LETTERS, 1998, 23 (18) : 1486 - 1488