The rank-width of the square grid

被引:14
|
作者
Jelinek, Vit [1 ]
机构
[1] Charles Univ Prague, Dept Appl Math, CR-11800 Prague, Czech Republic
关键词
Rank-width; Grid graph; Graph decomposition;
D O I
10.1016/j.dam.2009.02.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Rank-width is a graph width parameter introduced by Oum and Seymour. It is known that a class of graphs has bounded rank-width if, and only if, it has bounded clique-width, and that the rank-width of G is less than or equal to its branch-width. The n x n square grid, denoted by G(n,n), is a graph on the vertex set {1, 2, ... , n} x {1, 2, ... , n}, where a vertex (x, y) is connected by an edge to a vertex (x', y') if and only if vertical bar x - x'vertical bar + vertical bar y - y'vertical bar = 1. We prove that the rank-width of G(n,n) is equal to it n - 1, thus solving an open problem of Oum. (c) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:841 / 850
页数:10
相关论文
共 50 条
  • [1] The Rank-Width of the Square Grid
    Jelinek, Vit
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2008, 5344 : 230 - 239
  • [2] Computing rank-width exactly
    Oum, Sang-il
    INFORMATION PROCESSING LETTERS, 2009, 109 (13) : 745 - 748
  • [3] On low rank-width colorings
    Kwon, O-joung
    Pilipczuk, Michal
    Siebertz, Sebastian
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 83
  • [4] Rank-width of random graphs
    Lee, Choongbum
    Lee, Joonkyung
    Oum, Sang-il
    JOURNAL OF GRAPH THEORY, 2012, 70 (03) : 339 - 347
  • [5] On Low Rank-Width Colorings
    Kwon, O-joung
    Pilipczuk, Michal
    Siebertz, Sebastian
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE (WG 2017), 2017, 10520 : 372 - 385
  • [6] Rank-width: Algorithmic and structural results
    Oum, Sang-il
    DISCRETE APPLIED MATHEMATICS, 2017, 231 : 15 - 24
  • [7] Approximating rank-width and clique-width quickly
    Oum, S
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2005, 3787 : 49 - 58
  • [8] Graph operations characterizing rank-width
    Courcelle, Bruno
    Kante, Mamadou Moustapha
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (04) : 627 - 640
  • [9] Rank-width and vertex-minors
    Oum, SI
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 79 - 100
  • [10] Approximating Rank-Width and Clique-Width Quickly
    Oum, Sang-Il
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 5 (01)