Existence and Non-existence of Global Solutions for a Nonlocal Choquard-Kirchhoff Diffusion Equations in R

被引:0
|
作者
Boudjeriou, Tahir [1 ]
机构
[1] Univ Bejaia, Dept Math, Fac Exact Sci, Lab Appl Math, Bejaia 06000, Algeria
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2021年 / 84卷 / SUPPL 1期
关键词
Choquard-Kirchhoff diffusion equations; Fractional p-Laplacian; Global existence; Blow-up; Galerkin method; BLOW-UP; FRACTIONAL LAPLACIAN;
D O I
10.1007/s00245-021-09783-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the local existence, global existence, and blow-up of solutions to the Cauchy problem for Choquard-Kirchhoff-type equations involving the fractional p-Laplacian. As a particular case, we study the following initial value problem R+ is the potential function. Under some appropriate conditions, the well-posedness of nonnegative solutions for the above Cauchy problem is established by employing the Galerkin method. Moreover, the asymptotic behavior of global solutions is investigated under some assumptions on the initial data. We also establish upper and lower bounds for the blow-up time.In this paper, we investigate the local existence, global existence, and blow-up of solutions to the Cauchy problem for Choquard-Kirchhoff-type equations involving the fractional p-Laplacian. As a particular case, we study the following initial value problem
引用
收藏
页码:S695 / S732
页数:38
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for critical Choquard-Kirchhoff type equations with variable growth
    Tao, Lulu
    He, Rui
    Liang, Sihua
    Niu, Rui
    AIMS MATHEMATICS, 2022, 8 (02): : 3026 - 3048
  • [2] Existence of Solutions for a Critical Choquard-Kirchhoff Problem with Variable Exponents
    Zhang, Youpei
    Qin, Dongdong
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (07)
  • [3] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    Kirane, M.
    Ahmad, B.
    Alsaedi, A.
    Al-Yami, M.
    ACTA APPLICANDAE MATHEMATICAE, 2014, 133 (01) : 235 - 248
  • [4] Non-existence of Global Solutions to a System of Fractional Diffusion Equations
    M. Kirane
    B. Ahmad
    A. Alsaedi
    M. Al-Yami
    Acta Applicandae Mathematicae, 2014, 133 : 235 - 248
  • [5] Existence and non-existence of global solutions for uniformly parabolic equations
    Meneses, Rodrigo
    Quaas, Alexander
    JOURNAL OF EVOLUTION EQUATIONS, 2012, 12 (04) : 943 - 955
  • [6] Existence and non-existence of global solutions for uniformly parabolic equations
    Rodrigo Meneses
    Alexander Quaas
    Journal of Evolution Equations, 2012, 12 : 943 - 955
  • [7] Global existence and global non-existence of solutions to a reaction-diffusion system
    Zheng, SN
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 39 (03) : 327 - 340
  • [8] Qualitative analysis of solutions to a nonlocal Choquard-Kirchhoff diffusion equations in Double-struck capital RN$$ {\mathbb{R}}∧N $$
    Li, Lijuan
    Zhou, Jun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (03) : 3255 - 3284
  • [9] Existence of ground states for fractional Choquard-Kirchhoff equations withmagnetic fields and critical exponents
    Guo, Zhenyu
    Zhao, Lujuan
    PERIODICA MATHEMATICA HUNGARICA, 2023, 87 (02) : 468 - 483
  • [10] Multiple solutions for critical Choquard-Kirchhoff type equations
    Liang, Sihua
    Pucci, Patrizia
    Zhang, Binlin
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 400 - 419