Broadband and multilayer core-shell FeCo@C@mSiO2 nanoparticles for microwave absorption

被引:44
|
作者
Ding, Ling [1 ]
Huang, Ying [1 ]
Liu, Xudong [1 ]
Xu, Zhipeng [1 ]
Li, Suping [1 ]
Yan, Jing [1 ]
Liu, Panbo [1 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, Minist Educ, MOE Key Lab Mat Phys & Chem Extraordinary Condit, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Mesoporous silica; Microwave absorption; Core-shell structure; Nanocomposites; HIERARCHICAL NANOSTRUCTURES; CARBON NANOTUBES; GRAPHENE; PERFORMANCE; MICROSPHERES; NANOCOMPOSITES; CONSTRUCTION; FECO; FABRICATION; LIGHTWEIGHT;
D O I
10.1016/j.jallcom.2019.152168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The core-shell composite of FeCo alloy coated with amorphous carbon and mesoporous silica (mSiO(2) for short) has been successfully fabricated through liquid-phase reduction, hydrothermal reaction as well as high temperature calcination, forming nanoparticles around 400 nm in size. The alloy core provides strong magnetic loss and keeps stable under the protection of the shell, while the carbon shell reduces density and promotes dielectric loss. The outer layer of mSiO(2) provides a larger specific surface area for multiple reflections, and meanwhile effectively adjusting the impedance matching, resulting in a better absorption. With a thickness of 3.5 mm, the maximum R-L of the composite reaches -46.79 dB at 11.84 GHz, and the effective absorption bandwidth with the R-L below -10 dB is up to 8.8 GHz (from 9.2 to 18.0 GHz). Hence, FeCo@C@mSiO(2) composite is potential to become an excellent candidate in the field of microwave absorption. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Synthesis and Investigations on Microwave Absorption Properties of Core-Shell FeCo(C) Alloy Nanoparticles
    Gupta, Vatsana
    Patra, Manoj K.
    Shukla, Anuj
    Saini, Lokesh
    Songara, Sandhya
    Jani, Rajkumar
    Vadera, Sampat R.
    Kumar, Narendra
    SCIENCE OF ADVANCED MATERIALS, 2014, 6 (06) : 1196 - 1202
  • [2] Enhanced Microwave Absorption Properties of FeCo@TiO2 Core-Shell Nanoparticles
    Gharaati, Abdolrasoul
    Ebrahimzadeh, Majid
    CURRENT NANOSCIENCE, 2019, 15 (02) : 163 - 168
  • [3] Facile synthesis and excellent microwave absorption properties of FeCo-C core-shell nanoparticles
    Liang, Bingbing
    Wang, Shiliang
    Kuang, Daitao
    Hou, Lizhen
    Yu, Bowen
    Lin, Liangwu
    Deng, Lianwen
    Huang, Han
    He, Jun
    NANOTECHNOLOGY, 2018, 29 (08)
  • [4] Microwave absorption of FeCo-C core-shell nanoparticles with tunable thickness of C shells and the underlying mechanism
    Kuang, Daitao
    Wang, Shiliang
    ADVANCED POWDER TECHNOLOGY, 2024, 35 (12)
  • [5] Improved microwave absorbing properties of core-shell FeCo@C nanoparticles
    Tan, Qiulan
    Tao, Li
    Rehman, Sajjad Ur
    Zhong, Minglong
    Wang, Lei
    Chen, Changcai
    Xiong, Houdong
    Xie, Weicheng
    Zhong, Zhenchen
    MATERIALS RESEARCH EXPRESS, 2019, 6 (07):
  • [6] Influences of Metal Core and Carbon Shell on the Microwave Absorption Performance of Cu-C Core-Shell Nanoparticles
    Wang, Shiliang
    Kuang, Daitao
    Deng, Lianwen
    Duan, Weijie
    Xiao, Gang
    Sun, Xiaogang
    Chen, Chuansheng
    INORGANIC CHEMISTRY, 2023, 62 (14) : 5487 - 5495
  • [7] Tuning the shell thickness of FeCo/graphite core-shell nanoparticles
    Azizi, Amin
    Khosla, Tushar
    Mitchell, Brian
    Pesika, Noshir
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [8] Enhanced broadband microwave absorption of Fe/C core-shell nanofibers in X and Ku bands
    Dong, Shixiang
    Li, Jing
    Li, Ning
    Zhang, Shuai
    Li, Bo
    Zhang, Qianli
    Ge, Liqin
    CERAMICS INTERNATIONAL, 2023, 49 (05) : 8181 - 8189
  • [9] Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption
    Wang, Fengyuan
    Wang, Na
    Han, Xijiang
    Liu, Dawei
    Wang, Yahui
    Cui, Liru
    Xu, Ping
    Du, Yunchen
    CARBON, 2019, 145 : 701 - 711
  • [10] Hierarchical core-shell FeCo@SiO2@NiFe2O4 nanocomposite for efficient microwave absorption
    Wang, Zhenjun
    Zhao, Quanming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 953 (953)