Global existence to a chemotaxis-consumption model with nonlinear diffusion and singular sensitivity

被引:8
|
作者
Jia, Zhe [1 ]
Yang, Zuodong [1 ,2 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Teacher Educ, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Keller-Segel; global existence; chemotaxis consumption; nonlinear diffusion; singular sensitivity; KELLER-SEGEL SYSTEM; BOUNDEDNESS; EQUATIONS;
D O I
10.1080/00036811.2018.1478083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the chemotaxis-consumption model with singular sensitivity and nonlinear diffusion ut =. center dot (D(u). u) -.. center dot f (u) v. v , x. , t > 0, vt = v - g(u)v, x. , t > 0, under the homogenous Neumann boundary condition in a smoothbounded domain . RN(N = 2), with positive parameters., and D(u)= d(u+ e)m-1, f (u)= K(u+ e)a, g(u) = s(u+ e)ss for d, K, s, e, ss > 0, m> 1 and a. R. The main goal of this paper is to prove the existence of global classical solutions whena < N/4, ss = 1 and m > a + N/4.
引用
收藏
页码:2916 / 2929
页数:14
相关论文
共 50 条