Modeling Adsorption and Optical Properties for the Design of CO2 Photocatalytic Metal-Organic Frameworks

被引:6
|
作者
Chacon, Priscila [1 ]
Hernandez-Lima, Joseelyne G. [1 ]
Bazan-Jimenez, Adan [1 ]
Garcia-Revilla, Marco A. [1 ]
机构
[1] Univ Guanajuato, Chem Dept, Nat & Exact Sci Div, Noria Alta S-N, Guanajuato 36050, Mexico
来源
MOLECULES | 2021年 / 26卷 / 10期
关键词
MOFs; photocatalysis; CO2; reduction; environmental-remediation; bonding; QTAIM; FRUSTRATED LEWIS PAIRS; ELECTRON-DENSITY; HYDROGEN-BOND; ATOMS; REDUCTION; ORDER; MOF-5; GEOMETRY; METHANOL; SPECTRA;
D O I
10.3390/molecules26103060
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Four Metal-Organic Frameworks (MOFs) were modeled (IRMOF-C-BF2, IRMOF-C-(2)-BF2, IRMOF-C'-BF2, and IRMOF-C-CH2BF2) based on IRMOF-1. A series of linkers, based on Frustrated Lewis Pairs and coumarin moieties, were attached to IRMOF-1 to obtain MOFs with photocatalytic properties. Four different linkers were used: (a) a BF2 attached to a coumarin moiety at position 3, (b) two BF2 attached to a coumarin moiety in positions 3 and 7, (c) a BF2 attached in the coumarin moiety at position 7, and (d) a CH2BF2 attached at position 3. An analysis of the adsorption properties of H-2, CO2, H2O and possible CO2 photocatalytic capabilities was performed by means of computational modeling using Density Functional Theory (DFT), Time-Dependent Density Functional (TD-DFT) methods, and periodic quantum chemical wave function approach. The results show that the proposed linkers are good enough to improve the CO2 adsorption, to hold better bulk properties, and obtain satisfactory optical properties in comparison with IRMOF-1 by itself.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] CO2 Adsorption in Metal-organic Frameworks
    Kim, Jun
    Kim, Hee-Young
    Ahn, Wha-Seung
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2013, 51 (02): : 171 - 180
  • [2] Molecular modeling and design of metal-organic frameworks for CO2 capture
    Yazaydin, Ozgur
    Bae, Youn-Sang
    Yu, Decai
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [3] Metal-organic frameworks (MOFs) for photocatalytic CO2 reduction
    Chen, Yi
    Wang, Dengke
    Deng, Xiaoyu
    Li, Zhaohui
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (21) : 4893 - 4904
  • [4] Molecular modeling of metal-organic frameworks for CO2 capture
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [5] Metal-Organic Frameworks for Photocatalytic Water Splitting and CO2 Reduction
    Sun, Kang
    Qian, Yunyang
    Jiang, Hai-Long
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (15)
  • [6] Photocatalytic CO2 reduction in metal-organic frameworks: A mini review
    Wang, Chong-Chen
    Zhang, Yan-Qiu
    Li, Jin
    Wang, Peng
    JOURNAL OF MOLECULAR STRUCTURE, 2015, 1083 : 127 - 136
  • [7] Metal-organic frameworks based materials for photocatalytic CO2 reduction
    Crake, Angus
    MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (15) : 1737 - 1749
  • [8] Preparation of Metal-Organic Frameworks and Application for CO2 Adsorption and Separation
    Jiang Ning
    Deng Zhiyong
    Wang Gongying
    Liu Shaoying
    PROGRESS IN CHEMISTRY, 2014, 26 (10) : 1645 - 1654
  • [9] Metal-Organic Frameworks (MOFs) and their Applications in CO2 Adsorption and Conversion
    Zulkifli, Zuraini, I
    Lim, Kean L.
    Teh, Lee P.
    CHEMISTRYSELECT, 2022, 7 (22):
  • [10] Phosphonates Meet Metal-Organic Frameworks: Towards CO2 Adsorption
    da Silva, Cleiser Thiago P.
    Howarth, Ashlee J.
    Rimoldi, Martino
    Islamoglu, Timur
    Rinaldi, Andrelson W.
    Hupp, Joseph T.
    ISRAEL JOURNAL OF CHEMISTRY, 2018, 58 (9-10) : 1164 - 1170