The steep Nekhoroshev's Theorem and optimal stability exponents (an announcement)

被引:7
|
作者
Guzzo, Massimiliano [1 ]
Chierchia, Luigi [2 ]
Benettin, Giancarlo [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
关键词
Hamiltonian systems; Nekhoroshev's Theorem; steepness; INTEGRABLE HAMILTONIAN-SYSTEMS;
D O I
10.4171/RLM/679
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new statement of Nekhoroshev's Theorem in the general steep case with stability exponents, conjectured to be optimal, is presented. Si presenta un nuovo enunciato del teorema di Nekhoroshev nel caso ripido ("steep'') generico, con migliori esponenti di stabilita, che si congetturano essere ottimali.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 50 条
  • [1] The Steep Nekhoroshev’s Theorem
    M. Guzzo
    L. Chierchia
    G. Benettin
    Communications in Mathematical Physics, 2016, 342 : 569 - 601
  • [2] The Steep Nekhoroshev's Theorem
    Guzzo, M.
    Chierchia, L.
    Benettin, G.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 342 (02) : 569 - 601
  • [3] A generalization of Nekhoroshev’s theorem
    Larry Bates
    Richard Cushman
    Regular and Chaotic Dynamics, 2016, 21 : 639 - 642
  • [4] A generalization of Nekhoroshev's theorem
    Bates, Larry
    Cushman, Richard
    REGULAR & CHAOTIC DYNAMICS, 2016, 21 (06): : 639 - 642
  • [5] EFFECTIVE STABILITY IN HAMILTONIAN-SYSTEMS IN THE LIGHT OF NEKHOROSHEV THEOREM
    GIORGILLI, A
    INTEGRABLE SYSTEMS AND APPLICATIONS, 1989, 342 : 142 - 153
  • [6] Denjoy's theorem with exponents
    Norton, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (10) : 3111 - 3118
  • [7] Applicability of Nekhoroshev's theorem in some selected chaotic regions
    Pavlovic, Rade
    PROCEEDINGS OF THE 14TH NATIONAL CONFERENCE OF ASTRONOMERS OF SERBIA AND MONTENEGRO, 2006, (80): : 167 - 171
  • [8] A PROOF OF NEKHOROSHEV THEOREM FOR THE STABILITY TIMES IN NEARLY INTEGRABLE HAMILTONIAN-SYSTEMS
    BENETTIN, G
    GALGANI, L
    GIORGILLI, A
    CELESTIAL MECHANICS, 1985, 37 (01): : 1 - 25
  • [9] Nekhoroshev estimates for the orbital stability of Earth’s satellites
    Alessandra Celletti
    Irene De Blasi
    Christos Efthymiopoulos
    Celestial Mechanics and Dynamical Astronomy, 2023, 135
  • [10] Nekhoroshev estimates for the orbital stability of Earth's satellites
    Celletti, Alessandra
    De Blasi, Irene
    Efthymiopoulos, Christos
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2023, 135 (02):