analysis on fractals;
Schrodinger operators;
Sierpinski gasket;
D O I:
10.1090/S0002-9939-07-09008-9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this note we investigate the asymptotic behavior of spectra of Schrodinger operators with continuous potential on the Sierpinski gasket SG. In particular, using the existence of localized eigenfunctions for the Laplacian on SG we show that the eigenvalues of the Schrodinger operator break into clusters around certain eigenvalues of the Laplacian. Moreover, we prove that the characteristic measure of these clusters converges to a measure. Results similar to ours were first observed by A. Weinstein and V. Guillemin for Schrodinger operators on compact Riemannian manifolds.
机构:
Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Bonnefont, Michel
Golenia, Sylvain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Golenia, Sylvain
Keller, Matthias
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jena, Math Inst, D-07745 Jena, GermanyUniv Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
机构:
Hunan Normal Univ, Coll Math & Stat, Key Lab High Performance Comp & Stochast Informat, Changsha, Hunan, Peoples R China
Hunan First Normal Univ, Coll Math & Computat Sci, Changsha, Hunan, Peoples R ChinaHunan Normal Univ, Coll Math & Stat, Changsha, Hunan, Peoples R China