Bias in resampling-based thresholding of statistical maps in fMRI

被引:0
|
作者
Friman, O [1 ]
Westin, CF [1 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Dept Radiol,Lab Math Imaging, Cambridge, MA 02138 USA
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Selecting a threshold for the statistical parameter maps in functional MRI (fMRI) is a delicate matter. The use of advanced test statistics and/or the complex dependence structure of the noise may preclude parametric statistical methods for finding appropriate thresholds. Non-parametric statistical methodology has been presented as a feasible alternative. In this paper we discuss resampling-based methods for finding thresholds and show that proposed non-parametric approaches can lead to severely biased results.
引用
收藏
页码:711 / 718
页数:8
相关论文
共 50 条
  • [1] Resampling-based bias-corrected time series prediction
    Bandyopadhyay, S.
    Lahiri, S. N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (12) : 3775 - 3788
  • [2] Consensus Clustering: A Resampling-based Method for Building Radiation Hybrid Maps
    Seetan, Raed I.
    Bible, Jacob
    Karavias, Michael
    Seitan, Wael
    Thangiah, Sam
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 240 - 245
  • [3] Resampling-based methods for biologists
    Fieberg, John R.
    Vitense, Kelsey
    Johnson, Douglas H.
    PEERJ, 2020, 8
  • [4] Statistical properties of an early stopping rule for resampling-based multiple testing
    Jiang, Hui
    Salzman, Julia
    BIOMETRIKA, 2012, 99 (04) : 973 - 980
  • [5] Resampling-based nonparametric statistical inferences about the distributions of order statistics
    Andronov A.
    Fiosina Afanasyeva J.A.
    Journal of Mathematical Sciences, 2013, 191 (4) : 485 - 491
  • [6] Resampling-based noise correction for crowdsourcing
    Xu, Wenqiang
    Jiang, Liangxiao
    Li, Chaoqun
    Journal of Experimental and Theoretical Artificial Intelligence, 2021, 33 (06): : 985 - 999
  • [7] Resampling-Based Change Point Estimation
    Fiosina, Jelena
    Fiosins, Maksims
    ADVANCES IN INTELLIGENT DATA ANALYSIS X: IDA 2011, 2011, 7014 : 150 - 161
  • [8] Resampling-based selective clustering ensembles
    Hong, Yi
    Kwong, Sam
    Wang, Hanli
    Ren, Qjngsheng
    PATTERN RECOGNITION LETTERS, 2009, 30 (03) : 298 - 305
  • [9] Resampling-based noise correction for crowdsourcing
    Xu, Wenqiang
    Jiang, Liangxiao
    Li, Chaoqun
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2021, 33 (06) : 985 - 999
  • [10] A resampling-based approach to share reference panels
    Cavinato, Theo
    Rubinacci, Simone
    Malaspinas, Anna-Sapfo
    Delaneau, Olivier
    NATURE COMPUTATIONAL SCIENCE, 2024, 4 (05): : 360 - 366