New bounds for variable-sized and resource augmented online bin packing

被引:0
|
作者
Epstein, L [1 ]
Seiden, S
van Stee, R
机构
[1] Interdisciplinary Ctr, Sch Comp Sci, Herzliyya, Israel
[2] Univ Freiburg, Inst Informat, D-79110 Freiburg, Germany
[3] Louisiana State Univ, Dept Comp Sci, Baton Rouge, LA 70803 USA
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the variable-sized online bin packing problem, one has to assign items to bins one by one. The bins are drawn from some fixed set of sizes, and the goal is to minimize the sum of the sizes of the bins used. We present new algorithms for this problem and show upper bounds for them which improve on the best previous upper bounds. We also show the first general lower bounds for this problem. The case where bins of two sizes, 1 and alpha is an element of (0, 1), are used is studied in detail. This investigation leads us to the discovery of several interesting fractal-like curves. Our techniques are also applicable to the closely related resource augmented online bin packing problem, where we have also obtained the first general lower bounds.
引用
收藏
页码:306 / 317
页数:12
相关论文
共 50 条