Millimeter-Scale Zn(3-ptz)2 Metal-Organic Framework Single Crystals: Self-Assembly Mechanism and Growth Kinetics

被引:9
|
作者
Garcia-Garfido, Juan M. [1 ,2 ]
Enriquez, Javier [1 ,3 ]
Chi-Duran, Ignacio [1 ,2 ]
Jara, Ivan [1 ]
Vivas, Leonardo [1 ,2 ]
Hernandez, Federico J. [4 ]
Herrera, Felipe [1 ,2 ]
Singh, Dinesh P. [1 ,2 ]
机构
[1] Univ Santiago Chile USACH, Fac Sci, Phys Dept, Santiago 9170124, Estacion Centra, Chile
[2] Millennium Inst Res Opt, ANID Millennium Sci Initiat Program, Concepcion 4130691, Chile
[3] Univ Santiago, Fac Engn, Dept Met Engn, Santiago 9170022, Estacion Centra, Chile
[4] Queen Mary Univ London, Sch Biol & Chem Sci, Dept Chem, London E1 4NS, England
来源
ACS OMEGA | 2021年 / 6卷 / 27期
关键词
5-SUBSTITUTED; 1H-TETRAZOLES; COORDINATION MODULATION; 2ND-HARMONIC GENERATION; ACID; SIZE; MORPHOLOGY; CRYSTALLIZATION; DIFFRACTION; SEPARATION; ZINC(II);
D O I
10.1021/acsomega.1c01272
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The solvothermal synthesis of metal-organic frameworks (MOFs) often proceeds through competing crystallization pathways, and only partial control over the crystal nucleation and growth rates is possible. It challenges the use of MOFs as functional devices in free-space optics, where bulk single crystals of millimeter dimensions and high optical quality are needed. We develop a synthetic protocol to control the solvothermal growth of the MOF [Zn(3-ptz)(2)](n) (MIRO-101), to obtain large single crystals with projected surface areas of up to 25 mm(2) in 24 h, in a single reaction with in situ ligand formation. No additional cooling and growth steps are necessary. We propose a viable reaction mechanism for the formation of MIRO-101 crystals under acidic conditions, by isolating intermediate crystal structures that directly connect with the target MOF and reversibly interconverting between them. We also study the nucleation and growth kinetics of MIRO-101 using ex situ crystal image analysis. The synthesis parameters that control the size and morphology of our target MOF crystal are discussed. Our work deepens our understanding of MOF growth processes in solution and demonstrates the possibility of building MOF-based devices for future applications in optics.
引用
收藏
页码:17289 / 17298
页数:10
相关论文
共 34 条
  • [1] Controlled Growth of the Noncentrosymmetric Zn(3-ptz)2 and Zn(OH)(3-ptz) Metal-Organic Frameworks
    Enriquez, Javier
    Manquian, Carolina
    Chi-Duran, Ignacio
    Herrera, Felipe
    Singh, Dinesh Pratap
    ACS OMEGA, 2019, 4 (04): : 7411 - 7419
  • [2] Phase-Coherent Optical Frequency Up-Conversion with Millimeter-Size Zn(3-ptz)2 Metal-Organic Framework Single Crystals
    Hidalgo-Rojas, Diego
    Garcia-Garfido, Juan
    Enriquez, Javier
    Rojas-Aedo, Ricardo
    Wheatley, Robert Alastair
    Fritz, Ruben A.
    Singh, Dinesh P.
    Herrera, Felipe
    Seifert, Birger
    ADVANCED OPTICAL MATERIALS, 2023, 11 (15)
  • [3] Anisotropic Band-Edge Absorption of Millimeter-Sized Zn(3-ptz)2 Single-Crystal Metal-Organic Frameworks
    Chi-Duran, Ignacio
    Fritz, Ruben A.
    Urzua-Leiva, Rodrigo
    Cardenas-Jiron, Gloria
    Singh, Dinesh Pratap
    Herrera, Felipe
    ACS OMEGA, 2022, 7 (28): : 24432 - 24437
  • [4] Growing and Shaping Metal-Organic Framework Single Crystals at the Millimeter Scale
    Sorrenti, Alessandro
    Jones, Lewis
    Sevim, Semih
    Cao, Xiaobao
    DeMello, Andrew J.
    Marti-Gastaldo, Carlos
    Puigmarti-Luis, Josep
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (20) : 9372 - 9381
  • [5] Millimeter-scale semiconductive metal-organic framework single crystal for X-ray imaging
    Cheng, Liwei
    Liang, Chengyu
    Li, Baoyu
    Qin, Haoming
    Mi, Pinhong
    Chen, Bin
    Yan, Yizhou
    Dai, Xing
    Zhang, Chao
    Wang, Yanlong
    Wang, Yaxing
    Wang, Shuao
    CELL REPORTS PHYSICAL SCIENCE, 2022, 3 (08):
  • [6] Design Rules for Self-Assembly of 2D Nanocrystal/Metal-Organic Framework Superstructures
    Qiu, Fen
    Edison, John R.
    Preisler, Zdenek
    Zhang, Yan-Fang
    Li, Guo
    Pan, Aizhao
    Hsu, Chih-Hao
    Mattox, Tracy M.
    Ercius, Peter
    Song, Chengyu
    Bustillo, Karen
    Brady, Michael A.
    Zaia, Edmond W.
    Jeong, Sohee
    Neaton, Jeffrey B.
    Du, Shixuan
    Whitelam, Stephen
    Urban, Jeffrey J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (40) : 13172 - 13176
  • [7] Self-assembly of lanthanide helicate coordination polymers into 3D metal-organic framework structures
    Ghosh, SK
    Bharadwaj, PK
    INORGANIC CHEMISTRY, 2004, 43 (07) : 2293 - 2298
  • [8] Functionalization of Cotton Fiber by Partial Etherification and Self-Assembly of Polyoxometalate Encapsulated in Cu3(BTC)2 Metal-Organic Framework
    Lange, Laura E.
    Obendorf, S. Kay
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (07) : 3974 - 3980
  • [9] Self-Assembly and Oriented Growth of Conductive Ni-CAT-1 Metal-Organic Framework at Solid-Liquid Interfaces
    Shin, Sun Hae Ra
    Tao, Jinhui
    Canfield, Nathan L.
    Bowden, Mark E.
    Heo, Jaeyoung
    Li, Dongsheng
    Liu, Jun
    De Yoreo, James J.
    Thallapally, Praveen K.
    Sushko, Maria L.
    ADVANCED MATERIALS INTERFACES, 2023, 10 (04)
  • [10] The self-assembly of single-walled metal-organic nanotubes constructed from CuCl2 chains and ditetrazoles
    Li, Bing
    Chen, Shun-Wei
    Chen, Zheng
    Chen, Jie
    Guo, Jian-Zhong
    Liu, Li
    CRYSTENGCOMM, 2011, 13 (22): : 6610 - 6612