The prediction of protein secondary structure with a cascade correlation learning architecture of neural networks

被引:5
|
作者
Vivarelli, F [1 ]
Fariselli, P [1 ]
Casadio, R [1 ]
机构
[1] UNIV BOLOGNA, DEPT BIOL, BIOPHYS LAB, I-40126 BOLOGNA, ITALY
来源
NEURAL COMPUTING & APPLICATIONS | 1997年 / 6卷 / 01期
关键词
cascade correlation learning algorithm; neural networks; pattern recognition; predictive methods; protein secondary structure prediction;
D O I
10.1007/BF01670152
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A Cascade Correlation Learning Architecture (CCLA) of neural networks is tested on the task of predicting the secondary structure of proteins. The results are compared with those obtained with Neural Networks (NN) trained with the back-propagation algorithm (BPNN) and generated with genetic algorithms. CCLA proceeds towards rite global minimum of the error function more efficiently than BPNN. However; only a slight improvement in the average efficiency value is noticeable (61.82% as compared with 61.61% obtained with BPNN). The values of the three correlation coefficients for the discriminated secondary structures are also rather similar (C-alpha, and C-beta and C-coil are 0.36, 0.29 and 0.36 with CCLA, and 0.36, 0.31 and 0.35 with BPNN). This indicates that the efficiency of the prediction does not depend upon the training algorithm, and confirms our previous observation that when single sequences are used as input code to the network system.
引用
收藏
页码:57 / 62
页数:6
相关论文
共 50 条
  • [1] The prediction of protein secondary structure with a Cascade Correlation Learning Architecture of neural networks
    F. Vivarelli
    P. Fariselli
    R. Casadio
    Neural Computing & Applications, 1997, 6 : 57 - 62
  • [2] Predicting protein secondary structure by cascade-correlation neural networks
    Wood, MJ
    Hirst, JD
    BIOINFORMATICS, 2004, 20 (03) : 419 - 420
  • [3] Protein secondary structure prediction using neural networks and deep learning: A review
    Wardah, Wafaa
    Khan, M. G. M.
    Sharma, Alok
    Rashid, Mahmood A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2019, 81 : 1 - 8
  • [4] Bayesian neural networks for prediction of protein secondary structure
    Shao, JL
    Xu, D
    Wang, LZ
    Wang, YF
    ADVANCED DATA MINING AND APPLICATIONS, PROCEEDINGS, 2005, 3584 : 544 - 551
  • [5] Protein secondary structure prediction using neural networks
    Singh, P
    Zhang, YQ
    DATA MINING AND KNOWLEDGE DISCOVERY: THEORY, TOOLS, AND TECHNOLOGY VI, 2004, 5433 : 108 - 113
  • [6] Pruning Neural Networks for Protein Secondary Structure Prediction
    Babaei, Sepideh
    Seyyedsalehi, Seyyed A.
    Geranmayeh, Amir
    8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2, 2008, : 321 - +
  • [7] Neural networks with Resilient Propagation for protein secondary structure prediction
    Clayton, Amshea
    Zhang, Yanqing
    2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, 2006, : 766 - +
  • [8] Parallel protein secondary structure prediction based on neural networks
    Zhong, W
    Altun, G
    Tian, XM
    Harrison, R
    Tai, PC
    Pan, Y
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 2968 - 2971
  • [9] Combining Deep Neural Networks for Protein Secondary Structure Prediction
    Zhou, Shusen
    Zou, Hailin
    Liu, Chanjuan
    Zang, Mujun
    Liu, Tong
    IEEE ACCESS, 2020, 8 : 84362 - 84370
  • [10] Protein secondary structure prediction methods based on RBF neural networks
    Jing, N.
    Xia, B.
    Zhou, C. G.
    Wang, Y.
    COMPUTATIONAL METHODS, PTS 1 AND 2, 2006, : 1037 - +