On the Numerical Range of Operators on some Special Banach Spaces

被引:0
|
作者
Mandal, Kalidas [1 ]
Bhanja, Aniket [2 ]
Bag, Santanu [2 ]
Paul, Kallol [1 ]
机构
[1] Jadavpur Univ, Dept Math, Kolkata, W Bengal, India
[2] Vivekananda Coll Thakurpukur, Dept Math, Kolkata, W Bengal, India
关键词
Semi-inner-product; numerical range; convex set;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The numerical range of a bounded linear operator on a complex Banach space need not be convex unlike that on a Hilbert space. The aim of this paper is to study operators T on l(p)(2) for which the numerical range is convex. We also obtain a nice relation between V(T) and V(T-t) considering T is an element of L(l(p)(2) ) and T-t is an element of L(l(q)(2)), where T-t denotes the transpose of T and p and q are conjugate real numbers i.e., 1 < p, q < infinity and 1/p + 1/q = 1.
引用
收藏
页码:371 / 380
页数:10
相关论文
共 50 条
  • [1] Numerical range of operators acting on Banach spaces
    Khadijeh Jahedi
    Bahmann Yousefi
    Czechoslovak Mathematical Journal, 2012, 62 : 495 - 503
  • [2] Numerical range of operators acting on Banach spaces
    Jahedi, Khadijeh
    Yousefi, Bahmann
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2012, 62 (02) : 495 - 503
  • [3] A semigroup approach to the numerical range of operators on Banach spaces
    Adler, Martin
    Dada, Waed
    Radl, Agnes
    SEMIGROUP FORUM, 2017, 94 (01) : 51 - 70
  • [4] NUMERICAL RANGE OF OPERATORS AND STRUCTURE IN BANACH-SPACES
    PAYAALBERT, R
    QUARTERLY JOURNAL OF MATHEMATICS, 1982, 33 (131): : 357 - 364
  • [5] A semigroup approach to the numerical range of operators on Banach spaces
    Martin Adler
    Waed Dada
    Agnes Radl
    Semigroup Forum, 2017, 94 : 51 - 70
  • [6] ON THE BLOCK NUMERICAL RANGE OF OPERATORS ON ARBITRARY BANACH SPACES
    Radl, Agnes
    Wolff, Manfred P. H.
    OPERATORS AND MATRICES, 2018, 12 (01): : 229 - 252
  • [7] Spatial Numerical range of bounded operators on right quaternionic Banach spaces
    Moulaharabbi, Somayya
    Barraa, Mohamed
    ACTA SCIENTIARUM MATHEMATICARUM, 2024,
  • [8] LIFTABLE OPERATORS ON SOME BANACH SPACES
    Kang, JeongHeung
    KOREAN JOURNAL OF MATHEMATICS, 2015, 23 (03): : 447 - 456
  • [9] Closed range positive operators on Banach spaces
    Zsigmond Tarcsay
    Acta Mathematica Hungarica, 2014, 142 : 494 - 501
  • [10] Closed range positive operators on Banach spaces
    Tarcsay, Zs
    ACTA MATHEMATICA HUNGARICA, 2014, 142 (02) : 494 - 501