Small-world effects in the majority-vote model

被引:92
|
作者
Campos, PRA
de Oliveira, VM
Moreira, FGB
机构
[1] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
[2] CALTECH, Digital Life Lab, Pasadena, CA 91125 USA
[3] Univ Fed Pernambuco, Dept Fis, BR-50670901 Recife, PE, Brazil
来源
PHYSICAL REVIEW E | 2003年 / 67卷 / 02期
关键词
D O I
10.1103/PhysRevE.67.026104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the majority-vote model on small-world networks by rewiring the two-dimensional square lattice. We observe that the introduction of long-range interactions does not remove the critical character of the model, that is, the system still exhibits a well-defined phase transition. However, we find that now the critical point is a monotonically increasing function of the rewiring probability. Moreover, we find that small-world effects change the class of universality of the model.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Majority-vote model on a dynamic small-world network
    Stone, Thomas E.
    Mckay, Susan R.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 419 : 437 - 443
  • [2] Majority-vote on directed small-world networks
    Luz, Edina M. S.
    Lima, F. W. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (08): : 1251 - 1261
  • [3] Damage spreading in the majority-vote model on small-world networks
    Medeiros, NGF
    Silva, ATC
    Moreira, FGB
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 348 : 691 - 700
  • [4] Majority-vote model with a bimodal distribution of noises in small-world networks
    Vilela, Andre L. M.
    de Souza, Adauto J. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 488 : 216 - 223
  • [5] Three-state majority-vote model on small-world networks
    Bernardo J. Zubillaga
    André L. M. Vilela
    Minggang Wang
    Ruijin Du
    Gaogao Dong
    H. Eugene Stanley
    Scientific Reports, 12
  • [6] Three-state majority-vote model on small-world networks
    Zubillaga, Bernardo J.
    Vilela, Andre L. M.
    Wang, Minggang
    Du, Ruijin
    Dong, Gaogao
    Stanley, H. Eugene
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [7] Diffusive majority-vote model
    Lima, J. R. S.
    Lima, F. W. S.
    Alves, T. F. A.
    Alves, G. A.
    Macedo-Filho, A.
    PHYSICAL REVIEW E, 2022, 105 (03)
  • [8] Continuous majority-vote model
    Costa, LSA
    de Souza, AJF
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [9] Stochastic resonance in the majority vote model on regular and small-world lattices
    Krawiecki, A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2017, 31 (29):
  • [10] Majority-vote model on directed Small-World-Voronoi-Delaunay random lattices
    Brenda, R. S. C.
    Lima, F. W. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2018, 29 (07):