A Note on Global Newton Iteration Over Archimedean and Non-Archimedean Fields

被引:0
|
作者
Hauenstein, Jonathan D. [1 ]
Pan, Victor Y. [2 ]
Szanto, Agnes [1 ]
机构
[1] North Carolina State Univ, Raleigh, NC 27695 USA
[2] City Univ New York, Lehman Coll, Newark, NY USA
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study iterative methods on the coefficients of the rational univariate representation (RUR) of a given algebraic set, called a global Newton iterations. We compare two natural approaches to define locally quadratically convergent iterations: the first one involves Newton iteration applied to the approximate roots individually and then interpolation to find the RUR of these approximate roots; the second one considers the coefficients in the exact RUR as zeroes of a high dimensional map defined by polynomial reduction and applies Newton iteration on this map. We prove that over fields with a p-adic valuation these two approaches give the same iteration function. However, over fields equipped with the usual Archimedean absolute value they are not equivalent. In the latter case, we give explicitly the iteration function for both approaches. Finally, we analyze the parallel complexity of the different versions of the global Newton iteration, compare them, and demonstrate that they can be efficiently computed. The motivation for this study comes from the certification of approximate roots of overdetermined and singular polynomial systems via the recovery of an exact RUR from approximate numerical data.
引用
收藏
页码:202 / 217
页数:16
相关论文
共 50 条
  • [1] APPROXIMATION OF NON-ARCHIMEDEAN LYAPUNOV EXPONENTS AND APPLICATIONS OVER GLOBAL FIELDS
    Gauthier, Thomas
    Okuyama, Yusuke
    Vigny, Gabriel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (12) : 8963 - 9011
  • [2] NOTE ON NON-ARCHIMEDEAN METRIZATION
    COHEN, LW
    GOFFMAN, C
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (03) : 281 - 281
  • [3] Cohomology of algebraic varieties over non-archimedean fields
    Kovacsics, Pablo Cubides
    Edmundo, Mario J.
    Ye, Jinhe
    FORUM OF MATHEMATICS SIGMA, 2022, 10
  • [4] Meromorphic solutions of equations over non-Archimedean fields
    An, Ta Thi Hoai
    Escassut, Alain
    RAMANUJAN JOURNAL, 2008, 15 (03): : 415 - 433
  • [5] Commutators on Banach spaces over non-Archimedean fields
    Sliwa, Wieslaw
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [6] Local heights of subvarieties over non-archimedean fields
    Gubler, W
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1998, 498 : 61 - 113
  • [7] Meromorphic solutions of equations over non-Archimedean fields
    Ta Thi Hoai An
    Alain Escassut
    The Ramanujan Journal, 2008, 15 : 415 - 433
  • [8] Commutators on Banach spaces over non-Archimedean fields
    Wiesław Śliwa
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [9] Gabor frames on non-Archimedean fields
    Ahmad, Owais
    Shah, Firdous A.
    Sheikh, Neyaz A.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2018, 15 (05)
  • [10] On the quotient class of non-archimedean fields
    Dinis, Bruno
    van den Berg, Imme
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (04): : 784 - 795