L2-Betti Numbers of Hypersurface Complements

被引:4
|
作者
Maxim, Laurentiu [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
ALEXANDER INVARIANTS; L(2)-COHOMOLOGY;
D O I
10.1093/imrn/rnt093
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [2], it was shown that if A is an affine hyperplane arrangement in C-n, then at most one of the L-2-Betti numbers b(i)((2))(C-n \ A, id) is nonzero. In this note, we prove an analogous statement for complements of complex affine hypersurfaces in general position at infinity. Furthermore, we recast and extend to this higher-dimensional setting results of [6, 9] about L-2-Betti numbers of plane curve complements.
引用
收藏
页码:4665 / 4678
页数:14
相关论文
共 50 条