A Simple Optimization Workflow to Enable Precise and Accurate Imputation of Missing Values in Proteomic Data Sets

被引:17
|
作者
Dabke, Kruttika [1 ,2 ]
Kreimer, Simion [3 ,4 ]
Jones, Michelle R. [1 ]
Parker, Sarah J. [3 ,4 ]
机构
[1] Cedars Sinai Med Ctr, Ctr Bioinformat & Funct Genom, Dept Biomed Sci, Los Angeles, CA 90048 USA
[2] Cedars Sinai Med Ctr, Dept Biomed Sci, Grad Program Biomed Sci, Los Angeles, CA 90048 USA
[3] Cedars Sinai Med Ctr, Adv Clin Biosyst Res Inst, Smidt Heart Inst, Dept Cardiol, Los Angeles, CA 90048 USA
[4] Cedars Sinai Med Ctr, Adv Clin Biosyst Res Inst, Smidt Heart Inst, Dept Biomed Sci, Los Angeles, CA 90048 USA
关键词
DIA-MS; proteomics; missing values; imputation methods; GENE-EXPRESSION DATA; PROTEOGENOMIC CHARACTERIZATION; QUANTITATIVE PROTEOMICS; STATISTICAL-ANALYSIS; QUANTIFICATION; ALIGNMENT; PACKAGE;
D O I
10.1021/acs.jproteome.1c00070
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Missing values in proteomic data sets have real consequences on downstream data analysis and reproducibility. Although several imputation methods exist to handle missing values, no single imputation method is best suited for a diverse range of data sets, and no clear strategy exists for evaluating imputation methods for clinical DIA-MS data sets, especially at different levels of protein quantification. To navigate through the different imputation strategies available in the literature, we have established a strategy to assess imputation methods on clinical label-free DIA-MS data sets. We used three DIA-MS data sets with real missing values to evaluate eight imputation methods with multiple parameters at different levels of protein quantification: a dilution series data set, a small pilot data set, and a clinical proteomic data set comparing paired tumor and stroma tissue. We found that imputation methods based on local structures within the data, like local least-squares (LLS) and random forest (RF), worked well in our dilution series data set, whereas imputation methods based on global structures within the data, like BPCA, performed well in the other two data sets. We also found that imputation at the most basic protein quantification level-fragment level-improved accuracy and the number of proteins quantified. With this analytical framework, we quickly and cost-effectively evaluated different imputation methods using two smaller complementary data sets to narrow down to the larger proteomic data set's most accurate methods. This acquisition strategy allowed us to provide reproducible evidence of the accuracy of the imputation method, even in the absence of a ground truth. Overall, this study indicates that the most suitable imputation method relies on the overall structure of the data set and provides an example of an analytic framework that may assist in identifying the most appropriate imputation strategies for the differential analysis of proteins.
引用
收藏
页码:3214 / 3229
页数:16
相关论文
共 50 条
  • [1] A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
    Faquih, Tariq
    van Smeden, Maarten
    Luo, Jiao
    le Cessie, Saskia
    Kastenmueller, Gabi
    Krumsiek, Jan
    Noordam, Raymond
    van Heemst, Diana
    Rosendaal, Frits R.
    van Hylckama Vlieg, Astrid
    Willems van Dijk, Ko
    Mook-Kanamori, Dennis O.
    METABOLITES, 2020, 10 (12) : 1 - 23
  • [2] REGRESSION IMPUTATION OF MISSING VALUES IN LONGITUDINAL DATA SETS
    SCHNEIDERMAN, ED
    KOWALSKI, CJ
    WILLIS, SM
    INTERNATIONAL JOURNAL OF BIO-MEDICAL COMPUTING, 1993, 32 (02): : 121 - 133
  • [3] Proper Imputation Techniques for Missing Values in Data sets
    Aljuaid, Tahani
    Sasi, Sreela
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON DATA SCIENCE & ENGINEERING (ICDSE), 2016, : 146 - 150
  • [4] Methods for imputation of missing values in air quality data sets
    Junninen, H
    Niska, H
    Tuppurainen, K
    Ruuskanen, J
    Kolehmainen, M
    ATMOSPHERIC ENVIRONMENT, 2004, 38 (18) : 2895 - 2907
  • [5] Cyclical hybrid imputation technique for missing values in data sets
    Kotan, Kurban
    Kirisoglu, Serdar
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Simple data imputation for missing feature values in binary classification
    Chatterjee, Avishek
    Woodruff, Henry
    Vallieres, Martin
    Seuntjens, Jan
    MEDICAL PHYSICS, 2019, 46 (11) : 5378 - 5378
  • [7] Single imputation method of missing values in environmental pollution data sets
    Plaia, A.
    Bondi, A. L.
    ATMOSPHERIC ENVIRONMENT, 2006, 40 (38) : 7316 - 7330
  • [8] Optimization methods for the imputation of missing values in Educational Institutions Data
    Aureli, D.
    Bruni, R.
    Daraio, C.
    METHODSX, 2021, 8
  • [9] ProtRank: bypassing the imputation of missing values in differential expression analysis of proteomic data
    Matúš Medo
    Daniel M. Aebersold
    Michaela Medová
    BMC Bioinformatics, 20
  • [10] ProtRank: bypassing the imputation of missing values in differential expression analysis of proteomic data
    Medo, Matus
    Aebersold, Daniel M.
    Medova, Michaela
    BMC BIOINFORMATICS, 2019, 20 (01)